The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Alphavirus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Alphavirus

 

High impact information on Alphavirus

 

Chemical compound and disease context of Alphavirus

  • These findings suggest that in the capping of alphavirus mRNAs the guanine is methylated before linkage to the mRNA molecule [11].
  • When HTLV-I-transformed and tax-expressing human T-cell lines were infected with this recombinant retrovirus (LNLTK alpha virus), they expressed high levels of HSV TK and exhibited increased sensitivity to acyclovir, a nucleoside analog that is converted to the toxic anabolite after phosphorylation by the HSV TK [12].
  • Sphingolipid and cholesterol dependence of alphavirus membrane fusion. Lack of correlation with lipid raft formation in target liposomes [13].
  • A statistically significant similarity has been detected between the sequences of these domains and those of the C-terminal serine protease domains of alphavirus capsid proteins [14].
  • Adaptation of alphaviruses to heparan sulfate: interaction of Sindbis and Semliki forest viruses with liposomes containing lipid-conjugated heparin [15].
 

Biological context of Alphavirus

  • Acid-induced movements in the glycoprotein shell of an alphavirus turn the spikes into membrane fusion mode [16].
  • Contrary to this model, we show that three cell types highly overexpressing functional Bcl-2 displayed caspase-3 activation and underwent apoptosis in response to infection with alphaviruses Semliki Forest and Sindbis as efficiently as vector control counterparts [8].
  • When mutations preventing nsP1 palmitoylation were introduced into the genomes of these two alphaviruses, the mutant viruses remained viable and replicated to high titers, although their growth was slightly delayed [17].
  • This phenotype is contrary to what has been observed for infection in vertebrate cells with a presumably functional RNase L gene and more resembled alphavirus replication in Aedes mosquito cells, in which the activity of replication complexes making plus stands was also found to decay with inhibition of translation [18].
  • Along the 422 amino acids of the Semliki Forest virus (SFV) E2 envelope glycoprotein, we identified 13 peptide cassettes (ranging in size from 15 to 25 amino acids and designated A through N) that contain hydrophilic sequences flanked by amino acid sequences conserved in the E2 envelopes of the alphavirus family [19].
 

Anatomical context of Alphavirus

 

Gene context of Alphavirus

  • Retinoblastoma protein purification and transduction of retina and retinoblastoma cells using improved alphavirus vectors [24].
  • An arthrogenic alphavirus induces monocyte chemoattractant protein-1 and interleukin-8 [25].
  • This turnover of replication complexes that were stable in cells containing RNase L suggested that RNase L plays some role, albeit possibly indirect, in the formation of stable replication complexes during alphavirus infection [18].
  • DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell- and mammalian cell-derived viruses [26].
  • LRP works as a receptor for alphaviruses and is associated with the metastatic potential of solid tumors where it was first identified [27].
 

Analytical, diagnostic and therapeutic context of Alphavirus

References

  1. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Kuhn, R.J., Zhang, W., Rossmann, M.G., Pletnev, S.V., Corver, J., Lenches, E., Jones, C.T., Mukhopadhyay, S., Chipman, P.R., Strauss, E.G., Baker, T.S., Strauss, J.H. Cell (2002) [Pubmed]
  2. The cytoplasmic domain of alphavirus E2 glycoprotein contains a short linear recognition signal required for viral budding. Kail, M., Hollinshead, M., Ansorge, W., Pepperkok, R., Frank, R., Griffiths, G., Vaux, D. EMBO J. (1991) [Pubmed]
  3. Class II fusion protein of alphaviruses drives membrane fusion through the same pathway as class I proteins. Zaitseva, E., Mittal, A., Griffin, D.E., Chernomordik, L.V. J. Cell Biol. (2005) [Pubmed]
  4. Packaging of intron-containing genes into retrovirus vectors by alphavirus vectors. Li, K.J., Garoff, H. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  5. Rubella virus cDNA. Sequence and expression of E1 envelope protein. Nakhasi, H.L., Meyer, B.C., Liu, T.Y. J. Biol. Chem. (1986) [Pubmed]
  6. Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons. Binder, G.K., Griffin, D.E. Science (2001) [Pubmed]
  7. The serine proteinase inhibitor (serpin) plasminogen activation inhibitor type 2 protects against viral cytopathic effects by constitutive interferon alpha/beta priming. Antalis, T.M., La Linn, M., Donnan, K., Mateo, L., Gardner, J., Dickinson, J.L., Buttigieg, K., Suhrbier, A. J. Exp. Med. (1998) [Pubmed]
  8. Alphaviruses induce apoptosis in Bcl-2-overexpressing cells: evidence for a caspase-mediated, proteolytic inactivation of Bcl-2. Grandgirard, D., Studer, E., Monney, L., Belser, T., Fellay, I., Borner, C., Michel, M.R. EMBO J. (1998) [Pubmed]
  9. A tyrosine-based motif in the cytoplasmic domain of the alphavirus envelope protein is essential for budding. Zhao, H., Lindqvist, B., Garoff, H., von Bonsdorff, C.H., Liljeström, P. EMBO J. (1994) [Pubmed]
  10. Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins. Kääriäinen, L., Hashimoto, K., Saraste, J., Virtanen, I., Penttinen, K. J. Cell Biol. (1980) [Pubmed]
  11. Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. Ahola, T., Kääriäinen, L. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  12. Selective inhibition of human T-lymphotropic virus type I-transformed human T-cell growth by a tax-targeted conditionally cytotoxic recombinant retrovirus. Fujita, M., Murata, K., Shiku, H. Blood (1994) [Pubmed]
  13. Sphingolipid and cholesterol dependence of alphavirus membrane fusion. Lack of correlation with lipid raft formation in target liposomes. Waarts, B.L., Bittman, R., Wilschut, J. J. Biol. Chem. (2002) [Pubmed]
  14. N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Gorbalenya, A.E., Donchenko, A.P., Koonin, E.V., Blinov, V.M. Nucleic Acids Res. (1989) [Pubmed]
  15. Adaptation of alphaviruses to heparan sulfate: interaction of Sindbis and Semliki forest viruses with liposomes containing lipid-conjugated heparin. Smit, J.M., Waarts, B.L., Kimata, K., Klimstra, W.B., Bittman, R., Wilschut, J. J. Virol. (2002) [Pubmed]
  16. Acid-induced movements in the glycoprotein shell of an alphavirus turn the spikes into membrane fusion mode. Haag, L., Garoff, H., Xing, L., Hammar, L., Kan, S.T., Cheng, R.H. EMBO J. (2002) [Pubmed]
  17. Effects of palmitoylation of replicase protein nsP1 on alphavirus infection. Ahola, T., Kujala, P., Tuittila, M., Blom, T., Laakkonen, P., Hinkkanen, A., Auvinen, P. J. Virol. (2000) [Pubmed]
  18. Alphavirus minus-strand synthesis and persistence in mouse embryo fibroblasts derived from mice lacking RNase L and protein kinase R. Sawicki, D.L., Silverman, R.H., Williams, B.R., Sawicki, S.G. J. Virol. (2003) [Pubmed]
  19. Semliki Forest virus E2 envelope epitopes induce a nonneutralizing humoral response which protects mice against lethal challenge. Grosfeld, H., Velan, B., Leitner, M., Cohen, S., Lustig, S., Lachmi, B.E., Shafferman, A. J. Virol. (1989) [Pubmed]
  20. Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. Park, D.S., Levine, B., Ferrari, G., Greene, L.A. J. Neurosci. (1997) [Pubmed]
  21. Processing and intracellular transport of rubella virus structural proteins in COS cells. Hobman, T.C., Lundstrom, M.L., Gillam, S. Virology (1990) [Pubmed]
  22. Salmon pancreas disease virus, an alphavirus infecting farmed Atlantic salmon, Salmo salar L. Weston, J.H., Welsh, M.D., McLoughlin, M.F., Todd, D. Virology (1999) [Pubmed]
  23. Mucosal immunity induced by parenteral immunization with a live attenuated Venezuelan equine encephalitis virus vaccine candidate. Charles, P.C., Brown, K.W., Davis, N.L., Hart, M.K., Johnston, R.E. Virology (1997) [Pubmed]
  24. Retinoblastoma protein purification and transduction of retina and retinoblastoma cells using improved alphavirus vectors. DiCiommo, D.P., Duckett, A., Burcescu, I., Bremner, R., Gallie, B.L. Invest. Ophthalmol. Vis. Sci. (2004) [Pubmed]
  25. An arthrogenic alphavirus induces monocyte chemoattractant protein-1 and interleukin-8. Mateo, L., La Linn, M., McColl, S.R., Cross, S., Gardner, J., Suhrbier, A. Intervirology (2000) [Pubmed]
  26. DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell- and mammalian cell-derived viruses. Klimstra, W.B., Nangle, E.M., Smith, M.S., Yurochko, A.D., Ryman, K.D. J. Virol. (2003) [Pubmed]
  27. Role of the 37 kDa laminin receptor precursor in the life cycle of prions. Rieger, R., Lasmézas, C.I., Weiss, S. Transfusion clinique et biologique : journal de la Société française de transfusion sanguine. (1999) [Pubmed]
  28. Biochemical and biological characteristics of epitopes on the E1 glycoprotein of western equine encephalitis virus. Hunt, A.R., Roehrig, J.T. Virology (1985) [Pubmed]
 
WikiGenes - Universities