The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

CHEMBL1772     2-(4-hydroxyphenyl)ethanoic acid

Synonyms: PubChem22193, SureCN75700, AGN-PC-00G6EL, H50004_ALDRICH, AG-B-75453, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of p-Hydroxyphenyl acetic acid


High impact information on p-Hydroxyphenyl acetic acid


Chemical compound and disease context of p-Hydroxyphenyl acetic acid


Biological context of p-Hydroxyphenyl acetic acid

  • The hydroxylase has a molecular mass of 59,000 Da, uses NADH as a cosubstrate, and was tentatively classified as a 4-hydroxyphenylacetic acid hydroxylase, albeit it exhibited a rather broad substrate specificity acting on different monohydric and dihydric phenols [14].
  • The concentrations of PAA were increased ten-fold by hydrolysis, pHPAA increased two-fold, and mHPAA was unaffected [15].

Anatomical context of p-Hydroxyphenyl acetic acid


Associations of p-Hydroxyphenyl acetic acid with other chemical compounds


Gene context of p-Hydroxyphenyl acetic acid


Analytical, diagnostic and therapeutic context of p-Hydroxyphenyl acetic acid


  1. Superimposed levels of regulation of the 4-hydroxyphenylacetate catabolic pathway in Escherichia coli. Galàn, B., Kolb, A., Garciá, J.L., Prieto, M.A. J. Biol. Chem. (2001) [Pubmed]
  2. p-Hydroxyphenylacetic Acid Metabolism in Pseudomonas putida F6. O'Connor, K.E., Witholt, B., Duetz, W. J. Bacteriol. (2001) [Pubmed]
  3. Polymer production by Klebsiella pneumoniae 4-hydroxyphenylacetic acid hydroxylase genes cloned in Escherichia coli. Gibello, A., Ferrer, E., Sanz, J., Martin, M. Appl. Environ. Microbiol. (1995) [Pubmed]
  4. Regulation of the 4-hydroxyphenylacetic acid meta-cleavage pathway in an Acinetobacter sp. Barbour, M.G., Bayly, R.C. Biochem. Biophys. Res. Commun. (1977) [Pubmed]
  5. p-Cresol formation by cell-free extracts of Clostridium difficile. D'Ari, L., Barker, H.A. Arch. Microbiol. (1985) [Pubmed]
  6. Mercaptoethylguanidine and guanidine inhibitors of nitric-oxide synthase react with peroxynitrite and protect against peroxynitrite-induced oxidative damage. Szabó, C., Ferrer-Sueta, G., Zingarelli, B., Southan, G.J., Salzman, A.L., Radi, R. J. Biol. Chem. (1997) [Pubmed]
  7. Molecular characterization of 4-hydroxyphenylacetate 3-hydroxylase of Escherichia coli. A two-protein component enzyme. Prieto, M.A., Garcia, J.L. J. Biol. Chem. (1994) [Pubmed]
  8. Kinetics and metabolism of p-tyramine during monoamine oxidase inhibition by mofegiline. Huebert, N.D., Dulery, B.D., Schoun, J., Schwach, V., Hinze, C., Haegele, K.D. Clin. Pharmacol. Ther. (1994) [Pubmed]
  9. Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. Prieto, M.A., Díaz, E., García, J.L. J. Bacteriol. (1996) [Pubmed]
  10. Effects of monoamine oxidase inhibitors on the acid metabolites of some trace amines and of dopamine in the rat striatum. Dyck, L.E., Durden, D.A., Boulton, A.A. Biochem. Pharmacol. (1993) [Pubmed]
  11. Catabolism of aromatics in Pseudomonas putida U. Formal evidence that phenylacetic acid and 4-hydroxyphenylacetic acid are catabolized by two unrelated pathways. Olivera, E.R., Reglero, A., Martínez-Blanco, H., Fernández-Medarde, A., Moreno, M.A., Luengo, J.M. Eur. J. Biochem. (1994) [Pubmed]
  12. Urinary p-tyramine in hereditary tyrosinemia: II. Origin of urinary p-tyramine. Hoag, G.N., Hill, A., Zaleski, W. Clin. Biochem. (1977) [Pubmed]
  13. Tyrosyluria in marasmus. Dhatt, P.S., Saini, A.S., Gupta, I., Mehta, H.C., Singh, H. Br. J. Nutr. (1979) [Pubmed]
  14. Characterization of an Escherichia coli aromatic hydroxylase with a broad substrate range. Prieto, M.A., Perez-Aranda, A., Garcia, J.L. J. Bacteriol. (1993) [Pubmed]
  15. Conjugation of phenylacetic acid and m- and p-hydroxyphenylacetic acids in the rat striatum. Dyck, L.E., Durden, D.A., Boulton, A.A. Life Sci. (1993) [Pubmed]
  16. Determination of p-hydroxyphenylacetic acid in cerebrospinal fluid by high-performance liquid chromatography with electrochemical detection. Kobayashi, K., Koide, Y., Shohmori, T. Clin. Chim. Acta (1982) [Pubmed]
  17. Human salivary peroxidase-catalyzed oxidation of nitrite and nitration of salivary components 4-hydroxyphenylacetic acid and proteins. Takahama, U., Hirota, S., Nishioka, T., Oniki, T. Arch. Oral Biol. (2003) [Pubmed]
  18. Inhibition of inflammatory species by titanium surfaces. Suzuki, R., Frangos, J.A. Clin. Orthop. Relat. Res. (2000) [Pubmed]
  19. The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions. Benitez, F.J., Acero, J.L., Real, F.J., Rubio, F.J., Leal, A.I. Water Res. (2001) [Pubmed]
  20. The effects of amiflamine, a reversible MAO-A inhibitor, on the first pass metabolism of tyramine in dog intestine. Yasuhara, H., Kiuchi, Y., Oguchi, K., Davies, D.S., Dollery, C.T. Jpn. J. Pharmacol. (1986) [Pubmed]
  21. Simultaneous determination by GC-MS-SIM of o-, m-, p-hydroxyphenylacetic acid, 3:4-dihydroxyphenylacetic acid and homovanillic acid in biological samples using a common selected ion. Narasimhachari, N., Prakash, U., Helgeson, E., Davis, J.M. Journal of chromatographic science. (1978) [Pubmed]
  22. Optimising hydrogen peroxide measurement in exhaled breath condensate. Brooks, W.M., Lash, H., Kettle, A.J., Epton, M.J. Redox Rep. (2006) [Pubmed]
  23. A novel phenol hydroxylase and catechol 2,3-dioxygenase from the thermophilic Bacillus thermoleovorans strain A2: nucleotide sequence and analysis of the genes. Duffner, F.M., Müller, R. FEMS Microbiol. Lett. (1998) [Pubmed]
  24. Determination of purine nucleosides and their bases by high-performance liquid chromatography using co-immobilized enzyme reactors. Kito, M., Tawa, R., Takeshima, S., Hirose, S. J. Chromatogr. (1990) [Pubmed]
  25. The enzymatic spectrofluorimetric determination of uric acid in microsamples of plasma by using p-hydroxyphenylacetic acid as a fluorophor. Sumi, T., Umeda, Y., Kishi, Y., Takahashi, K., Kakimoto, F. Clin. Chim. Acta (1976) [Pubmed]
  26. A fluorometric assay of acyl-CoA oxidase activity by a coupled peroxidatic reaction: elimination of interfering side reactions. Kvannes, J., Flatmark, T. J. Biochem. Biophys. Methods (1991) [Pubmed]
  27. Fluorimetric analysis of hydrogen peroxide with automated measurement. van Beurden, W.J., van den Bosch, M.J., Janssen, W.C., Smeenk, F.W., Dekhuijzen, P.N., Harff, G.A. Clin. Lab. (2003) [Pubmed]
WikiGenes - Universities