The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Taurochenodeoxycholate     2-[4-[(3R,5S,7R,10R,13R)-3,7- dihydroxy-10...

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Taurochenodeoxycholate


High impact information on Taurochenodeoxycholate

  • However, when PI-3K was inhibited with wortmannin or dominant-negative PI 3-K, TCDC-induced Bid-GFP mitochondrial translocation and cytochrome c release [6].
  • In this study, the mechanisms by which the TCDC/PI 3-K survival signal disrupts Fas signaling were examined [6].
  • Mucin secretion was stimulated by extracellular adenosine 5'-triphosphate via P2U receptors, cytosolic calcium increase, and PKC and by taurochenodeoxycholate via cytosolic calcium increase and Ca2+/CaM-kinase II [7].
  • Purified kinesin transported microtubules in vitro with a velocity of approximately 0.5 microns/s; this activity was significantly inhibited by 0.5-1 mmol/L taurochenodeoxycholate but not by tauroursodeoxycholate [8].
  • In-vivo replenishment of the bile salt pool by intravenous infusion of either taurocholate or taurochenodeoxycholate (1 mumol/min) completely prevented the pigmentary precipitation [9].

Chemical compound and disease context of Taurochenodeoxycholate


Biological context of Taurochenodeoxycholate

  • Tauroursodeoxycholate and tauro-beta-muricholate exert cytoprotection by reducing intrahepatocyte taurochenodeoxycholate content [11].
  • Protein kinase C down-regulation caused a 70% reduction in TUDC-induced mucin secretion, but did not affect TCDC-induced secretion, which was mediated predominantly by Ca(2+)/calmodulin-dependent protein kinase II activation [12].
  • The effect of sulfate esterification of the 3 alpha- or 7 alpha-hydroxyl groups of taurochenodeoxycholate on calcium binding was studied at 0.154 M NaCl in the presence and absence of phosphatidylcholine using a calcium electrode [13].
  • The results indicate that increased calcium binding due to the presence of phosphatidylcholine in bile salt solutions depends, in part, on the hydrophilicity of the bile salt and that the interaction of monosulfate esters of taurochenodeoxycholate with phosphatidylcholine leads to the formation of a high affinity calcium binding site [13].
  • Increased fecal bile acid excretion and alterations of the circulating bile acid pool by removal of dihydroxy bile acids (e.g., taurochenodeoxycholate) appear to be main modulators of the hypocholesterolemic action of PSY by leading to an up-regulation of hepatic bile acid synthesis [14].

Anatomical context of Taurochenodeoxycholate


Associations of Taurochenodeoxycholate with other chemical compounds


Gene context of Taurochenodeoxycholate


Analytical, diagnostic and therapeutic context of Taurochenodeoxycholate


  1. The mutant Eisai hyperbilirubinemic rat is resistant to bile acid-induced cholestasis and cytotoxicity. Hoshino, M., Hayakawa, T., Hirano, A., Kamiya, Y., Ohiwa, T., Tanaka, A., Kumai, T., Inagaki, T., Miyaji, M., Takeuchi, T. Hepatology (1994) [Pubmed]
  2. Conjugates of ursodeoxycholate protect against cytotoxicity of more hydrophobic bile salts: in vitro studies in rat hepatocytes and human erythrocytes. Heuman, D.M., Pandak, W.M., Hylemon, P.B., Vlahcevic, Z.R. Hepatology (1991) [Pubmed]
  3. Effects of four taurine-conjugated bile acids on mucosal uptake and lymphatic absorption of cholesterol in the rat. Watt, S.M., Simmonds, W.J. J. Lipid Res. (1984) [Pubmed]
  4. Apoptosis induced in rat hepatocytes by in vivo exposure to taurochenodeoxycholate. Chieco, P., Romagnoli, E., Aicardi, G., Suozzi, A., Forti, G.C., Roda, A. Histochem. J. (1997) [Pubmed]
  5. Quantification of individual serum bile acids in patients with liver diseases using high-performance liquid chromatography. Okuda, H., Obata, H., Nakanishi, T., Hisamitsu, T., Matsubara, K., Watanabe, H. Hepatogastroenterology (1984) [Pubmed]
  6. The bile acid-activated phosphatidylinositol 3-kinase pathway inhibits Fas apoptosis upstream of bid in rodent hepatocytes. Takikawa, Y., Miyoshi, H., Rust, C., Roberts, P., Siegel, R., Mandal, P.K., Millikan, R.E., Gores, G.J. Gastroenterology (2001) [Pubmed]
  7. Regulation of mucin secretion in human gallbladder epithelial cells: predominant role of calcium and protein kinase C. Dray-Charier, N., Paul, A., Combettes, L., Bouin, M., Mergey, M., Balladur, P., Capeau, J., Housset, C. Gastroenterology (1997) [Pubmed]
  8. Isolation of the microtubule-vesicle motor kinesin from rat liver: selective inhibition by cholestatic bile acids. Marks, D.L., LaRusso, N.F., McNiven, M.A. Gastroenterology (1995) [Pubmed]
  9. Spontaneous formation of pigmentary precipitates in bile salt-depleted rat bile and its prevention by micelle-forming bile salts. Angelico, M., De Sanctis, S.C., Gandin, C., Alvaro, D. Gastroenterology (1990) [Pubmed]
  10. Taurine conjugate of ursodeoxycholate plays a major role in the hepatoprotective effect against cholestasis induced by taurochenodeoxycholate in rats. Tsukahara, K., Kanai, S., Ohta, M., Kitani, K. Liver (1993) [Pubmed]
  11. Tauroursodeoxycholate and tauro-beta-muricholate exert cytoprotection by reducing intrahepatocyte taurochenodeoxycholate content. Ohiwa, T., Katagiri, K., Hoshino, M., Hayakawa, T., Nakai, T. Hepatology (1993) [Pubmed]
  12. Bile acid transport and regulating functions in the human biliary epithelium. Chignard, N., Mergey, M., Veissière, D., Parc, R., Capeau, J., Poupon, R., Paul, A., Housset, C. Hepatology (2001) [Pubmed]
  13. Calcium binding by monosulfate esters of taurochenodeoxycholate. Stevens, R.D., Lack, L., Killenberg, P.G. J. Lipid Res. (1991) [Pubmed]
  14. Increased fecal bile acid excretion and changes in the circulating bile acid pool are involved in the hypocholesterolemic and gallstone-preventive actions of psyllium in hamsters. Trautwein, E.A., Kunath-Rau, A., Erbersdobler, H.F. J. Nutr. (1999) [Pubmed]
  15. Bile acid inhibition of P-glycoprotein-mediated transport in multidrug-resistant cells and rat liver canalicular membrane vesicles. Mazzanti, R., Fantappié, O., Kamimoto, Y., Gatmaitan, Z., Gentilini, P., Arias, I.M. Hepatology (1994) [Pubmed]
  16. Vasopressin reduces taurochenodeoxycholate-induced hepatotoxicity by lowering the hepatocyte taurochenodeoxycholate content. Nakazawa, T., Hoshino, M., Hayakawa, T., Tanaka, A., Ohiwa, T. J. Hepatol. (1996) [Pubmed]
  17. Effect of taurochenodeoxycholate or tauroursodeoxycholate upon biliary output of phospholipids and plasma-membrane enzymes, and the extent of cell damage, in isolated perfused rat livers. Barnwell, S.G., Lowe, P.J., Coleman, R. Biochem. J. (1983) [Pubmed]
  18. The effect of bile salts on the permeability and ultrastructure of the perfused, energy-depleted, rat blood-brain barrier. Greenwood, J., Adu, J., Davey, A.J., Abbott, N.J., Bradbury, M.W. J. Cereb. Blood Flow Metab. (1991) [Pubmed]
  19. Studies of the relationship between the catalytic activity and binding of non-substrate ligands by the glutathione S-transferases. Boyer, T.D., Vessey, D.A., Holcomb, C., Saley, N. Biochem. J. (1984) [Pubmed]
  20. Dietary fibers: V. Binding of bile salts, phospholipids and cholesterol from mixed micelles by bile acid sequestrants and dietary fibers. Vahouny, G.V., Tombes, R., Cassidy, M.M., Kritchevsky, D., Gallo, L.L. Lipids (1980) [Pubmed]
  21. Role of bile salts and trypsin in the pathogenesis of experimental alkaline esophagitis. Salo, J.A., Kivilaakso, E. Surgery (1983) [Pubmed]
  22. Mixed micelle properties and intestinal cholesterol uptake. Montet, J.C., Lindheimer, M., Reynier, M.O., Crotte, C., Bontemps, R., Gerolami, A. Biochimie (1982) [Pubmed]
  23. Bile acids induce cyclooxygenase-2 expression in human pancreatic cancer cell lines. Tucker, O.N., Dannenberg, A.J., Yang, E.K., Fahey, T.J. Carcinogenesis (2004) [Pubmed]
  24. Unique inhibition of bile salt-induced apoptosis by lecithins and cytoprotective bile salts in immortalized mouse cholangiocytes. Komichi, D., Tazuma, S., Nishioka, T., Hyogo, H., Une, M., Chayama, K. Dig. Dis. Sci. (2003) [Pubmed]
  25. Inhibition of hepatocyte growth factor production in human fibroblasts by ursodeoxycholic acid. Hiramatsu, K., Matsumoto, Y., Miyazaki, M., Tsubouchi, H., Yamamoto, I., Gohda, E. Biol. Pharm. Bull. (2005) [Pubmed]
  26. Characterization of the mouse bile salt export pump overexpressed in the baculovirus system. Noe, J., Hagenbuch, B., Meier, P.J., St-Pierre, M.V. Hepatology (2001) [Pubmed]
  27. Multispecific amphipathic substrate transport by an organic anion transporter of human liver. Bossuyt, X., Müller, M., Meier, P.J. J. Hepatol. (1996) [Pubmed]
  28. Identification of the 3-sulfate isomer as the major product of enzymatic sulfation of chenodeoxycholate conjugates. Kirkpatrick, R.B., Lack, L., Killenberg, P.G. J. Biol. Chem. (1980) [Pubmed]
  29. Studies on steroids. CCXXVII. Separation and determination of bile acid 7- and 12-sulphates in urine by high-performance liquid chromatography with fluorescence labelling. Goto, J., Chikai, T., Nambara, T. J. Chromatogr. (1987) [Pubmed]
  30. Treatment of experimentally induced cerebral atherothromboembolism in an animal model with streptokinase and taurochenodeoxycholate. Jeynes, B.J. Artery (1988) [Pubmed]
WikiGenes - Universities