The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

CHEBI:29747     (4R)-4-[ (3R,5S,7R,8S,9S,10S,12S,13R,14 S...

Synonyms: AC1NUT2R, 3qps, 81-25-4
This record was replaced with 221493.
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of cholate


High impact information on cholate

  • This altered pattern of adenylate cyclase regulation was reproduced when a cholate extract of the tumour membranes (which contains G proteins) was reconstituted with Gs-free, cyc- S49 cell membranes [6].
  • The results implicate cholate as an important negative regulator of bile acid synthesis and provide preliminary evidence for ligand-specific gene activation by a nuclear receptor [7].
  • Human LDL and HDL3 reconstituted with radiolabeled lipids were incubated with purified porcine CEL without or with cholate (10 or 100 microM, concentrations achievable in systemic or portal plasma, respectively) [8].
  • Pancreatic carboxyl ester lipase (CEL) hydrolyzes cholesteryl esters (CE), triglycerides (TG), and lysophospholipids, with CE and TG hydrolysis stimulated by cholate [8].
  • METHODS: Mice (+/+) wild type or (-/-) knockout for the mdr2 gene were fed with either purified control diet or this diet supplemented with cholate (0.1%) or ursodeoxycholate (0.5%) for 3, 6, or 22 weeks after weaning [2].

Chemical compound and disease context of cholate


Biological context of cholate


Anatomical context of cholate


Associations of cholate with other chemical compounds


Gene context of cholate


Analytical, diagnostic and therapeutic context of cholate

  • The amino-terminus of M13 coat protein is also found exclusively on the outside of dilauroyl or dimyristoyl lecithin vesicles, formed with coat protein by the cholate dilution technique [Racker, E., et al. (1975) FEBS Lett. 57, 14-18] near the lipid phase transition temperature [30].
  • During dialysis to remove cholate, lipid bilayer vesicles formed in which Band 3 existed as a dimer and in which intramembrane particles indistinguishable from those in the native membrane were exposed by freeze-fracturing [21].
  • To define further the ontogeny of bile acid metabolism in mammals, we examined maturational changes in the serum concentration of total cholate conjugates by radioimmunoassay in fetal, neonatal, suckling, and mature Sprague-Dawley rats [31].
  • De novo and preformed cholesterol directly secreted into bile or used for cholate and chenodeoxycholate synthesis were quantitated by high-pressure liquid chromatography (HPLC)-liquid scintillation [32].
  • After 40% partial hepatectomy (PH), CA- and DCA-treated groups underwent a deterioration of cholestatic hepatitis [33].


  1. The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Zhao, L., Moos, M.P., Gräbner, R., Pédrono, F., Fan, J., Kaiser, B., John, N., Schmidt, S., Spanbroek, R., Lötzer, K., Huang, L., Cui, J., Rader, D.J., Evans, J.F., Habenicht, A.J., Funk, C.D. Nat. Med. (2004) [Pubmed]
  2. Effects of Ursodeoxycholate and cholate feeding on liver disease in FVB mice with a disrupted mdr2 P-glycoprotein gene. Van Nieuwkerk, C.M., Elferink, R.P., Groen, A.K., Ottenhoff, R., Tytgat, G.N., Dingemans, K.P., Van Den Bergh Weerman, M.A., Offerhaus, G.J. Gastroenterology (1996) [Pubmed]
  3. Deoxycholate metabolism in alcoholic cirrhosis. Knodell, R.G., Kinsey, M., Boedeker, E.C., Collin, D.P. Gastroenterology (1976) [Pubmed]
  4. Specificity of diffusion channels produced by lambda phage receptor protein of Escherichia coli. Luckey, M., Nikaido, H. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  5. Sodium-stimulated active transport of aminoisobutyric acid by reconstituted vesicles from partially purified plasma membranes of mouse fibroblasts transformed by simian virus 40. Nishino, H., Tillotson, L.G., Schiller, R.M., Inui, K.I., Isselbacher, K.J. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  6. Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Vallar, L., Spada, A., Giannattasio, G. Nature (1987) [Pubmed]
  7. Cholic acid mediates negative feedback regulation of bile acid synthesis in mice. Li-Hawkins, J., Gåfvels, M., Olin, M., Lund, E.G., Andersson, U., Schuster, G., Björkhem, I., Russell, D.W., Eggertsen, G. J. Clin. Invest. (2002) [Pubmed]
  8. Pancreatic carboxyl ester lipase: a circulating enzyme that modifies normal and oxidized lipoproteins in vitro. Shamir, R., Johnson, W.J., Morlock-Fitzpatrick, K., Zolfaghari, R., Li, L., Mas, E., Lombardo, D., Morel, D.W., Fisher, E.A. J. Clin. Invest. (1996) [Pubmed]
  9. Sodium-dependent amino acid transport in reconstituted membrane vesicles from Ehrlich ascites cell plasma membranes. Bardin, C., Johnstone, R.M. J. Biol. Chem. (1978) [Pubmed]
  10. Two guanine nucleotide-binding proteins in rat brain serving as the specific substrate of islet-activating protein, pertussis toxin. Interaction of the alpha-subunits with beta gamma-subunits in development of their biological activities. Katada, T., Oinuma, M., Ui, M. J. Biol. Chem. (1986) [Pubmed]
  11. Evidence for cAMP and cholate extrusion in C6 rat glioma cells by a common anion efflux pump. Henderson, G.B., Strauss, B.P. J. Biol. Chem. (1991) [Pubmed]
  12. Solubilization and functional reconstitution of the proline transport system of Escherichia coli. Chen, C.C., Wilson, T.H. J. Biol. Chem. (1986) [Pubmed]
  13. Abnormal guanine nucleotide regulatory protein in MVP dysautonomia: evidence from reconstitution of Gs. Davies, A.O., Su, C.J., Balasubramanyam, A., Codina, J., Birnbaumer, L. J. Clin. Endocrinol. Metab. (1991) [Pubmed]
  14. Genetic alterations of IL-1 receptor antagonist in mice affect plasma cholesterol level and foam cell lesion size. Devlin, C.M., Kuriakose, G., Hirsch, E., Tabas, I. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  15. Regulation of multidrug resistance 2 P-glycoprotein expression by bile salts in rats and in primary cultures of rat hepatocytes. Gupta, S., Todd Stravitz, R., Pandak, W.M., Müller, M., Reno Vlahcevic, Z., Hylemon, P.B. Hepatology (2000) [Pubmed]
  16. Mechanism of action of chemoprotective ursodeoxycholate in the azoxymethane model of rat colonic carcinogenesis: potential roles of protein kinase C-alpha, -beta II, and -zeta. Wali, R.K., Frawley, B.P., Hartmann, S., Roy, H.K., Khare, S., Scaglione-Sewell, B.A., Earnest, D.L., Sitrin, M.D., Brasitus, T.A., Bissonnette, M. Cancer Res. (1995) [Pubmed]
  17. Modulation of gamma-glutamyl transpeptidase activity by bile acids. Abbott, W.A., Meister, A. J. Biol. Chem. (1983) [Pubmed]
  18. Bile acid transport in the anhepatic rat. Cucchiaro, G., Meyers, W.C., Young, S.L., Branum, G.D., Quarfordt, S. Gastroenterology (1992) [Pubmed]
  19. Stimulatory and inhibitory effects of bile salts on rat pancreatic secretion. Miyasaka, K., Funakoshi, A., Shikado, F., Kitani, K. Gastroenterology (1992) [Pubmed]
  20. Proteins of rough microsomal membranes related to ribosome binding. I. Identification of ribophorins I and II, membrane proteins characteristics of rough microsomes. Kreibich, G., Ulrich, B.L., Sabatini, D.D. J. Cell Biol. (1978) [Pubmed]
  21. Reconstitution of intramembrane particles in recombinants of erythrocyte protein band 3 and lipid: effects of spectrin-actin association. Yu, J., Branton, D. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  22. Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers. Nelson, N., Anholt, R., Lindstrom, J., Montal, M. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  23. Effects of bile salts on energy metabolism and acid secretion by the isolated toad gastric mucosa. Núñez, D., Chacín, J. Gastroenterology (1989) [Pubmed]
  24. Reconstitution of beta-adrenergic receptor with components of adenylate cyclase. Hekman, M., Feder, D., Keenan, A.K., Gal, A., Klein, H.W., Pfeuffer, T., Levitzki, A., Helmreich, E.J. EMBO J. (1984) [Pubmed]
  25. Purification of brain D2 dopamine receptor. Williamson, R.A., Worrall, S., Chazot, P.L., Strange, P.G. EMBO J. (1988) [Pubmed]
  26. Antifolate resistance associated with loss of MRP1 expression and function in Chinese hamster ovary cells with markedly impaired export of folate and cholate. Stark, M., Rothem, L., Jansen, G., Scheffer, G.L., Goldman, I.D., Assaraf, Y.G. Mol. Pharmacol. (2003) [Pubmed]
  27. beta-Dystroglycan can be revealed in microsomes from mdx mouse muscle by detergent treatment. Cluchague, N., Moreau, C., Rocher, C., Pottier, S., Leray, G., Cherel, Y., Le Rumeur, E. FEBS Lett. (2004) [Pubmed]
  28. Dietary cholate is required for antiatherogenic effects of ethanol in mouse models. Deeg, M.A. Alcohol. Clin. Exp. Res. (2003) [Pubmed]
  29. Clinical significance of high-density lipoproteins and the development of atherosclerosis: focus on the role of the adenosine triphosphate-binding cassette protein A1 transporter. Brewer, H.B., Santamarina-Fojo, S. Am. J. Cardiol. (2003) [Pubmed]
  30. Asymmetric orientation of phage M13 coat protein in Escherichia coli cytoplasmic membranes and in synthetic lipid vesicles. Wickner, W. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  31. Physiologic cholestasis II: serum bile acid levels reflect the development of the enterohepatic circulation in rats. Belknap, W.M., Balistreri, W.F., Suchy, F.J., Miller, P.C. Hepatology (1981) [Pubmed]
  32. Complex feedback regulation of bile acid synthesis in the hamster: the role of newly synthesized cholesterol. Scheibner, J., Fuchs, M., Hörmann, E., Stange, E.F. Hepatology (1999) [Pubmed]
  33. Modulation of rat hepatocyte proliferation by bile salts: in vitro and in vivo studies. Barone, M., Francavilla, A., Polimeno, L., Ierardi, E., Romanelli, D., Berloco, P., Di Leo, A., Panella, C. Hepatology (1996) [Pubmed]
WikiGenes - Universities