The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

JH-III     methyl(2E,6E)-9-[(2R)-3,3- dimethyloxiran...

Synonyms: AC1NQYKV, CPD-8838, JH III, J2000_SIGMA, ZINC13536517, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of JH III

  • Recombinant hJHBP1 expressed in E. coli migrated on SDS-PAGE with a Mr of 32 kDa and showed a Kd of 4.5 x 10-7 M with JH III, both similar to those of native hJHBP [1].
  • Maximum IGR activity was exhibited by 4'-(2,6,6-trimethyl-2-cyclohexen- -yl)-3'-buten-2'(E)-ketoxime-N-O-alkyl ether with an ED50 (morphological) of 40 microg g(-1) body weight, compared to 20 microg g(-1) of JH III [2].

Psychiatry related information on JH III

  • The critical period for caste determination and its juvenile hormone (JH III) correlates were studied in Bombus terrestris [3].

High impact information on JH III


Biological context of JH III

  • Development and reproduction of crustaceans is regulated by a combination of neuropeptide hormones, ecdysteroids (moulting hormones) and the isoprenoid, methyl farnesoate (MF), the unepoxidised analogue of insect juvenile hormone-III (JH-III) [9].
  • We have re-examined sesquiterpenoid biosynthesis throughout embryonic development and have found that early embryos produce both methyl farnesoate (MF) and JH III; as development proceeds, less MF and more JH is produced [10].
  • JH III had the highest affinity for binding sites, followed by JH I and JH 0 [11].
  • We have studied the effect of JH III upon vitellogenin gene expression in periovaric fat bodies incubated in vitro [12].
  • Vitellogenesis is characterized by an increase in the size of the corpora allata (CA) where structured SER bodies appear, and by a rise of juvenile hormone (JH III) content in the hemolymph which is followed by an increase in the level of ecdysteroids [13].

Anatomical context of JH III


Associations of JH III with other chemical compounds


Gene context of JH III

  • Because of reports of juvenile hormone (JH III) binding to Drosophila USP and the observed in silico RXR-like ligand-binding site in LmRXR-L, the recombinant proteins were also tested for binding to JH III [22].
  • The same DR12 element conferred enhanced transcriptional responsiveness of a transfected juvenile hormone esterase core promoter to treatment of transfected cells with JH III, but not to treatment with retinoic acid or T3 [23].
  • The JH III and JHB3 precursor, methyl farnesoate, did not affect ecdysteroid production [24].
  • After incubation with JH III bisepoxide, all cell fractions and cEH produced epoxy-diol, cis- and trans-tetrahydrofuran-diols, and tetraol as metabolites [25].
  • JH III was metabolized faster than JH III bisepoxide by epoxide hydrolase activity in D. melanogaster cell fractions and by cEH [25].

Analytical, diagnostic and therapeutic context of JH III


  1. The juvenile hormone binding protein of silkworm haemolymph: gene and functional analysis. Vermunt, A.M., Kamimura, M., Hirai, M., Kiuchi, M., Shiotsuki, T. Insect Mol. Biol. (2001) [Pubmed]
  2. Evaluation of substituted oxime ethers for growth regulatory activity against Spodoptera litura (F.). Izadi, H., Subrahmanyam, B. Communications in agricultural and applied biological sciences. (2005) [Pubmed]
  3. The critical period for caste determination in Bombus terrestris and its juvenile hormone correlates. Cnaani, J., Robinson, G.E., Hefetz, A. J. Comp. Physiol. A (2000) [Pubmed]
  4. Posttranscriptional control of the competence factor betaFTZ-F1 by juvenile hormone in the mosquito Aedes aegypti. Zhu, J., Chen, L., Raikhel, A.S. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  5. Resistance to juvenile hormone and an insect growth regulator in Drosophila is associated with an altered cytosolic juvenile hormone-binding protein. Shemshedini, L., Wilson, T.G. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  6. Precursor supply for insect juvenile hormone III biosynthesis in a cockroach. Feyereisen, R., Farnsworth, D.E. J. Biol. Chem. (1987) [Pubmed]
  7. Biosynthetic pathway of insect juvenile hormone III in cell suspension cultures of the sedge Cyperus iria. Bede, J.C., Teal, P.E., Goodman, W.G., Tobe, S.S. Plant Physiol. (2001) [Pubmed]
  8. Juvenile hormone regulation of HMG-R gene expression in the bark beetle Ips paraconfusus (Coleoptera: Scolytidae): implications for male aggregation pheromone biosynthesis. Tittiger, C., Blomquist, G.J., Ivarsson, P., Borgeson, C.E., Seybold, S.J. Cell. Mol. Life Sci. (1999) [Pubmed]
  9. Clustering of mandibular organ-inhibiting hormone and moult-inhibiting hormone genes in the crab, Cancer pagurus, and implications for regulation of expression. Lu, W., Wainwright, G., Webster, S.G., Rees, H.H., Turner, P.C. Gene (2000) [Pubmed]
  10. Methyl farnesoate and juvenile hormone production in embryos of Diploptera punctata in relation to innervation of corpora allata and their sensitivity to allatostatin. Stay, B., Zhang, J.R., Tobe, S.S. Peptides (2002) [Pubmed]
  11. Assay and identification of juvenile hormone binding proteins in Leucophaea maderae. Kovalick, G.E., Koeppe, J.K. Mol. Cell. Endocrinol. (1983) [Pubmed]
  12. Induction of vitellogenin gene transcription in vitro by juvenile hormone in Blattella germanica. Comas, D., Piulachs, M.D., Bellés, X. Mol. Cell. Endocrinol. (2001) [Pubmed]
  13. Activity of corpora allata, endocrine balance and reproduction in female Labidura riparia (Dermaptera). Baehr, J.C., Cassier, P., Caussanel, C., Porcheron, P. Cell Tissue Res. (1982) [Pubmed]
  14. Physiological approach to the onset of receptivity in female Acheta domesticus. I. Role of the corpora allata and ovaries. Renucci, M., Strambi, A., Augier, R. Hormones and behavior. (1985) [Pubmed]
  15. Hymenolepis diminuta-induced fecundity reduction may be caused by changes in hormone binding to Tenebrio molitor ovaries. Webb, T.J., Hurd, H. Parasitology (1995) [Pubmed]
  16. Characterization and regulation of HMG-CoA reductase during a cycle of juvenile hormone synthesis. Feyereisen, R., Farnsworth, D.E. Mol. Cell. Endocrinol. (1987) [Pubmed]
  17. Target of cockroach allatostatin in the pathway of juvenile hormone biosynthesis. Sutherland, T.D., Feyereisen, R. Mol. Cell. Endocrinol. (1996) [Pubmed]
  18. Identification of methyl farnesoate from in vitro culture of the retrocerebral complex of adult females of the moth, Heliothis virescens (Lepidoptera: Noctuidae) and its conversion to juvenile hormone III. Teal, P.E., Proveaux, A.T. Arch. Insect Biochem. Physiol. (2006) [Pubmed]
  19. The role of JH III and ecdysterone in the regulation of the left colleterial gland activities in Periplaneta americana during the reproductive cycle. Iris, F.J., Sin, F.Y. Gen. Comp. Endocrinol. (1988) [Pubmed]
  20. 1,5-Disubstituted imidazoles inhibit juvenile hormone biosynthesis by the corpora allata of the mosquito Aedes aegypti. Li, Y., Kuwano, E., Noriega, F.G. J. Insect Physiol. (2003) [Pubmed]
  21. Activity of the corpora allata of adult female Leucophaea maderae: effects of mating and feeding. Aclé, D., Brookes, V.J., Pratt, G.E., Feyereisen, R. Arch. Insect Biochem. Physiol. (1990) [Pubmed]
  22. Ligand specificity and developmental expression of RXR and ecdysone receptor in the migratory locust. Hayward, D.C., Dhadialla, T.S., Zhou, S., Kuiper, M.J., Ball, E.E., Wyatt, G.R., Walker, V.K. J. Insect Physiol. (2003) [Pubmed]
  23. Juvenile hormone III-dependent conformational changes of the nuclear receptor ultraspiracle. Jones, G., Wozniak, M., Chu, Y., Dhar, S., Jones, D. Insect Biochem. Mol. Biol. (2001) [Pubmed]
  24. Reversible juvenile hormone inhibition of ecdysteroid and juvenile hormone synthesis by the ring gland of Drosophila melanogaster. Richard, D.S., Gilbert, L.I. Experientia (1991) [Pubmed]
  25. In vitro metabolism of juvenile hormone III and juvenile hormone III bisepoxide by Drosophila melanogaster and mammalian cytosolic epoxide hydrolase. Casas, J., Harshman, L.G., Messeguer, A., Kuwano, E., Hammock, B.D. Arch. Biochem. Biophys. (1991) [Pubmed]
  26. Radioimmunoassay of insect juvenile hormones and of their diol derivatives. Strambi, C., Strambi, A., De Reggi, M.L., Hirn, M.H., Delaage, M.A. Eur. J. Biochem. (1981) [Pubmed]
  27. In vitro biosynthesis of juvenile hormone by the larval corpora allata of Manduca sexta: quantificationby radioimmunoassay. Granger, N.A., Bollenbacher, W.E., Vince, R., Gilbert, L.I., Baehr, J.C., Dray, F. Mol. Cell. Endocrinol. (1979) [Pubmed]
  28. Quantification of juvenile hormone III, vitellogenin, and vitellogenin-mRNA during the oviposition cycle of the lubber grasshopper. Borst, D.W., Eskew, M.R., Wagner, S.J., Shores, K., Hunter, J., Luker, L., Hatle, J.D., Hecht, L.B. Insect Biochem. Mol. Biol. (2000) [Pubmed]
  29. In vitro assay for the biosynthesis and metabolism of juvenile hormone by exposed corpora allata of Aedes aegypti (Diptera: Culicidae). Borovsky, D., Carlson, D.A. J. Med. Entomol. (1992) [Pubmed]
WikiGenes - Universities