The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Tropane     8-methyl-8- azabicyclo[3.2.1]octane

Synonyms: SureCN44882, ACMC-20ajag, AC1L2WIJ, KB-46886, CTK4J6728, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Tropane

  • METHODS: Using [123I]-N-(3-iodopropen-2-yl)-2 -carbomethoxy-3beta-(4-chlorophenyl) tropane SPECT, we measured the basal ganglia-occipital cortex/occipital cortex ([BG-OCC]/OCC) uptake ratios in 21 control subjects and patients with isolated postural tremor (n = 9), postural and rest tremor (n = 6), and PD (n = 11) [1].
  • METHODS: We followed 6 patients with early Parkinson's disease for 7.5 y using 123I-labeled N-(3-iodopropene-2-yl)-2beta-carbomethoxy-3beta-(4-chlorophenyl) tropane and SPECT [2].
  • Behavioral studies in rats using the free ligand, TRODAT-1 and Re-TRODAT-1 indicated that, unlike other tropane derivatives, they displayed no effect on locomotor activity, suggesting low toxicity [3].
  • A strain of Rhodococcus designated MB1, which was capable of utilizing cocaine as a sole source of carbon and nitrogen for growth, was isolated from rhizosphere soil of the tropane alkaloid-producing plant Erythroxylum coca [4].
  • Fast-growing hairy root cultures of Hyoscyamus muticus induced by Agrobacterium rhizogenes offer a potential production system for tropane alkaloids [5].

Psychiatry related information on Tropane


High impact information on Tropane


Chemical compound and disease context of Tropane


Biological context of Tropane

  • Several categories of neuromuscular blocking bisquaternary tropine and tropane derivatives were synthesized and studied in the past five decades, mainly with the purpose of arriving at meaningful information about structure-activity relationships [15].
  • The results of this study further demonstrate the possibility of tuning the selectivity of tropane analogues toward the SERT or NET binding site [16].
  • A novel class of tricyclic tropane analogues has been synthesized by making use of radical cyclization technology in combination with the Stille coupling reaction [16].
  • The regional distribution, kinetics and pharmacological specificity of a new radioiodinated cocaine analog, N-((E)-3-iodopropen-2-yl)-2 beta-carbomethoxy-3 beta-(4-chlorophenyl) tropane ([123I]IPT) were examined in brain SPECT studies (n = 20) of nonhuman primates [17].
  • Behavioral and local cerebral metabolic effects of the novel tropane analog, 2 beta-propanoyl-3 beta-(4-tolyl)-tropane [18].

Anatomical context of Tropane

  • Herein, a series of the 6- and 7-hydroxylated WIN analogues possessing a boat or chair conformation of the tropane ring were prepared and tested for their ability to displace [(3)H]mazindol binding and to inhibit high-affinity monoamine uptake into rat brain nerve endings [19].
  • In vitro, using primary rat brain cultures of either midbrain or raphe regions, the recovery of the ability to transport either [3H]dopamine or [3H]serotonin, respectively was evaluated at 0, 3, 24, 48, 120 and 240 h after a 1 h exposure to cocaine and tropane analogs [20].
  • Six muscarinic ligands which have a 3-amino- or 3-methyl-1,2,4-oxadiazol-5-yl groups attached to the 8-methyl-8-azabicyclo[3.2.1]oct-2-ene or 8-methyl-8-azabicyclo[3.2.1]octane head group show binding constants between 2.04 x 10(-6) and 1.79 x 10(-5) M in rat heart, rat brain, and m1- or m3-transfected CHO cell membrane preparations [21].
  • We tested compounds structurally related to either the indole or tropane domains of tropisetron on oocytes expressing human alpha7. alpha4beta2, or alpha3beta4 nAChR or rat 5HT(3A) receptors [22].
  • The results suggest that replacement of a methylene linker by an ester does not seriously affect the binding properties of the tropane conjugates to the dopamine transporter but results in a drastic reduction of passage over the blood-brain barrier (BBB) [23].

Associations of Tropane with other chemical compounds


Gene context of Tropane

  • Cocaine analogue, CFT (2beta-carbomethoxy-3beta-(4-fluorophenyl) tropane) binding to dopamine transporter (DAT) in different species is quite heterogeneous [28].
  • The Discovery of Tropane-derived CCR5 Receptor Antagonists [29].
  • Opposing stereoselectivity and divergent structural requirements for optimal DAT binding suggest that these tropane-based DAT inhibitors may not access identical binding domains [30].
  • From the in vitro structure-activity data, it is apparent that a tolyl group in the 2-position, independent of the stereochemical attachment to the tropane ring system, provided compounds (9-12, 14) that exhibit high-affinity binding at the dopamine transporter (DAT) [31].
  • Further studies on conformationally constrained tricyclic tropane analogues and their uptake inhibition at monoamine transporter sites: synthesis of (Z)-9-(substituted arylmethylene)-7-azatricyclo[,7)]decanes as a novel class of serotonin transporter inhibitors [32].

Analytical, diagnostic and therapeutic context of Tropane

  • Selectivity manipulation using nonaqueous capillary electrophoresis. Application to tropane alkaloids and amphetamine derivatives [33].
  • Furthermore, behavioral evaluation of many of the benztropine analogues in animal models of cocaine abuse has suggested that these two classes of tropane-based dopamine uptake inhibitors have distinct pharmacological profiles [34].
  • Four tropane analogs (WF-11, WF-23, WF-24, WF-55) were found to support self-administration behavior on a PR schedule while three did not (WF-31, WF-54 and WF-60) [35].
  • A competitive solid-phase enzyme immunoassay for the evaluation of tropane alkaloids in plant material, using anti-DL-tropic acid antibodies [36].
  • TLC and HPLC methods for separation and identification of the tropane alkaloids were developed and their analytical data (RF values, retention times, ESI-MS) given [37].


  1. 123I-IPT brain SPECT study in essential tremor and Parkinson's disease. Lee, M.S., Kim, Y.D., Im, J.H., Kim, H.J., Rinne, J.O., Bhatia, K.P. Neurology (1999) [Pubmed]
  2. Loss of dopamine transporter binding in Parkinson's disease follows a single exponential rather than linear decline. Schwarz, J., Storch, A., Koch, W., Pogarell, O., Radau, P.E., Tatsch, K. J. Nucl. Med. (2004) [Pubmed]
  3. [99mTc]TRODAT-1: a novel technetium-99m complex as a dopamine transporter imaging agent. Kung, M.P., Stevenson, D.A., Plössl, K., Meegalla, S.K., Beckwith, A., Essman, W.D., Mu, M., Lucki, I., Kung, H.F. European journal of nuclear medicine. (1997) [Pubmed]
  4. Gene cloning and nucleotide sequencing and properties of a cocaine esterase from Rhodococcus sp. strain MB1. Bresler, M.M., Rosser, S.J., Basran, A., Bruce, N.C. Appl. Environ. Microbiol. (2000) [Pubmed]
  5. Heterologous expression of Vitreoscilla hemoglobin (VHb) and cultivation conditions affect the alkaloid profile of Hyoscyamus muticus hairy roots. Wilhelmson, A., Häkkinen, S.T., Kallio, P.T., Oksman-Caldentey, K.M., Nuutila, A.M. Biotechnol. Prog. (2006) [Pubmed]
  6. Reduced number of caudate nucleus dopamine uptake sites in vascular dementia. Allard, P., Englund, E., Marcusson, J. Dementia and geriatric cognitive disorders. (1999) [Pubmed]
  7. Cortical serotonin transporter density and verbal memory in individuals who stopped using 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy"): preliminary findings. Reneman, L., Lavalaye, J., Schmand, B., de Wolff, F.A., van den Brink, W., den Heeten, G.J., Booij, J. Arch. Gen. Psychiatry (2001) [Pubmed]
  8. Two tropinone reductases with different stereospecificities are short-chain dehydrogenases evolved from a common ancestor. Nakajima, K., Hashimoto, T., Yamada, Y. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  9. Pervilleine A, a novel tropane alkaloid that reverses the multidrug-resistance phenotype. Mi, Q., Cui, B., Silva, G.L., Lantvit, D., Lim, E., Chai, H., You, M., Hollingshead, M.G., Mayo, J.G., Kinghorn, A.D., Pezzuto, J.M. Cancer Res. (2001) [Pubmed]
  10. The uptake inhibitors cocaine and benztropine differentially alter the conformation of the human dopamine transporter. Reith, M.E., Berfield, J.L., Wang, L.C., Ferrer, J.V., Javitch, J.A. J. Biol. Chem. (2001) [Pubmed]
  11. Central serotonin transporter availability measured with [123I]beta-CIT SPECT in relation to serotonin transporter genotype. van Dyck, C.H., Malison, R.T., Staley, J.K., Jacobsen, L.K., Seibyl, J.P., Laruelle, M., Baldwin, R.M., Innis, R.B., Gelernter, J. The American journal of psychiatry. (2004) [Pubmed]
  12. Analysis of 2beta-carbomethoxy-3beta-(4-fluorophenyl)-N-(3-iodo-E-allyl)nortropane in rat plasma. I. Method development and validation by capillary electrophoresis. Hettiarachchi, K., Green, C.E., Ridge, S., Wu, B., Catz, P., Salem, M.A. Journal of chromatography. A. (2000) [Pubmed]
  13. Detection of preclinical Parkinson disease in at-risk family members with use of [123I]beta-CIT and SPECT: an exploratory study. Maraganore, D.M., O'Connor, M.K., Bower, J.H., Kuntz, K.M., McDonnell, S.K., Schaid, D.J., Rocca, W.A. Mayo Clin. Proc. (1999) [Pubmed]
  14. How Useful is ((123)I) b-CIT SPECT in the Diagnosis of Parkinson's Disease? Bhidayasiri, R. Reviews in neurological diseases. (2006) [Pubmed]
  15. Structure-activity relationships among derivatives of dicarboxylic acid esters of tropine. Gyermek, L. Pharmacol. Ther. (2002) [Pubmed]
  16. Novel conformationally constrained tropane analogues by 6-endo-trig radical cyclization and stille coupling - switch of activity toward the serotonin and/or norepinephrine transporter. Hoepping, A., Johnson, K.M., George, C., Flippen-Anderson, J., Kozikowski, A.P. J. Med. Chem. (2000) [Pubmed]
  17. Striatal dopamine transporter imaging in nonhuman primates with iodine-123-IPT SPECT. Malison, R.T., Vessotskie, J.M., Kung, M.P., McElgin, W., Romaniello, G., Kim, H.J., Goodman, M.M., Kung, H.F. J. Nucl. Med. (1995) [Pubmed]
  18. Behavioral and local cerebral metabolic effects of the novel tropane analog, 2 beta-propanoyl-3 beta-(4-tolyl)-tropane. Porrino, L.J., Davies, H.M., Childers, S.R. J. Pharmacol. Exp. Ther. (1995) [Pubmed]
  19. Chemical synthesis and pharmacology of 6- and 7-hydroxylated 2-carbomethoxy-3-(p-tolyl)tropanes: antagonism of cocaine's locomotor stimulant effects. Zhao, L., Johnson, K.M., Zhang, M., Flippen-Anderson, J., Kozikowski, A.P. J. Med. Chem. (2000) [Pubmed]
  20. Prolonged dopamine and serotonin transporter inhibition after exposure to tropanes. Bennett, B.A., Hollingsworth, C.K., Martin, R.S., Childers, S.R., Ehrenkaufer, R.E., Porrino, L.J., Davies, H.M. Neuropharmacology (1998) [Pubmed]
  21. Synthesis of 2-(3-substituted-1,2,4-oxadiazol-5-yl)-8-methyl-8-azabicyclo [3.2.1]octanes and 2 alpha-(3-substituted-1,2,4-oxadiazol-5-yl)-8-methyl-8- azabicyclo[3.2.1]oct-2-enes as potential muscarinic agonists. Triggle, D.J., Kwon, Y.W., Abraham, P., Rahman, M.A., Carroll, F.I. Pharm. Res. (1992) [Pubmed]
  22. Molecular dissection of tropisetron, an alpha7 nicotinic acetylcholine receptor-selective partial agonist. Papke, R.L., Schiff, H.C., Jack, B.A., Horenstein, N.A. Neurosci. Lett. (2005) [Pubmed]
  23. Development and biological evaluation of 99mTc-BAT-tropane esters. Vanbilloen, H.P., Kieffer, D., Cleynhens, B.J., Bormans, G., Mortelmans, L., Verbruggen, A.M. Nucl. Med. Biol. (2005) [Pubmed]
  24. Striatal dopamine transporter binding assessed by [I-123]IPT and single photon emission computed tomography in patients with early Parkinson's disease: implications for a preclinical diagnosis. Schwarz, J., Linke, R., Kerner, M., Mozley, P.D., Trenkwalder, C., Gasser, T., Tatsch, K. Arch. Neurol. (2000) [Pubmed]
  25. Synthesis and structure-activity relationships of potent and orally active 5-HT4 receptor antagonists: indazole and benzimidazolone derivatives. Schaus, J.M., Thompson, D.C., Bloomquist, W.E., Susemichel, A.D., Calligaro, D.O., Cohen, M.L. J. Med. Chem. (1998) [Pubmed]
  26. Structure-activity relationships at monoamine transporters for a series of N-substituted 3alpha-(bis[4-fluorophenyl]methoxy)tropanes: comparative molecular field analysis, synthesis, and pharmacological evaluation. Kulkarni, S.S., Grundt, P., Kopajtic, T., Katz, J.L., Newman, A.H. J. Med. Chem. (2004) [Pubmed]
  27. On-line capillary electrophoresis-electrospray mass spectrometry for the stereoselective analysis of drugs and metabolites. Cherkaoui, S., Rudaz, S., Varesio, E., Veuthey, J.L. Electrophoresis (2001) [Pubmed]
  28. The functional domains of dopamine transporter for cocaine analog, CFT binding. Lee, S.H., Chang, M.Y., Jeon, D.J., Oh, D.Y., Son, H., Lee, C.H., Lee, Y.S., Lee, Y.S. Exp. Mol. Med. (2002) [Pubmed]
  29. The Discovery of Tropane-derived CCR5 Receptor Antagonists. Armour, D.R., de Groot, M.J., Price, D.A., Stammen, B.L., Wood, A., Perros, M., Burt, C. Chemical biology & drug design. (2006) [Pubmed]
  30. Structure-activity relationship comparison of (S)-2beta-substituted 3alpha-(bis[4-fluorophenyl]methoxy)tropanes and (R)-2beta-substituted 3beta-(3,4-dichlorophenyl)tropanes at the dopamine transporter. Zou, M.F., Kopajtic, T., Katz, J.L., Newman, A.H. J. Med. Chem. (2003) [Pubmed]
  31. Synthesis and biological evaluation of 2-substituted 3beta-tolyltropane derivatives at dopamine, serotonin, and norepinephrine transporters. Xu, L., Izenwasser, S., Katz, J.L., Kopajtic, T., Klein-Stevens, C., Zhu, N., Lomenzo, S.A., Winfield, L., Trudell, M.L. J. Med. Chem. (2002) [Pubmed]
  32. Further studies on conformationally constrained tricyclic tropane analogues and their uptake inhibition at monoamine transporter sites: synthesis of (Z)-9-(substituted arylmethylene)-7-azatricyclo[,7)]decanes as a novel class of serotonin transporter inhibitors. Zhang, A., Zhou, G., Hoepping, A., Mukhopadhyaya, J., Johnson, K.M., Zhang, M., Kozikowski, A.P. J. Med. Chem. (2002) [Pubmed]
  33. Selectivity manipulation using nonaqueous capillary electrophoresis. Application to tropane alkaloids and amphetamine derivatives. Cherkaoui, S., Varesio, E., Christen, P., Veuthey, J.L. Electrophoresis (1998) [Pubmed]
  34. Structure-activity relationships at monoamine transporters and muscarinic receptors for N-substituted-3alpha-(3'-chloro-, 4'-chloro-, and 4',4''-dichloro-substituted-diphenyl)methoxytropanes. Newman, A.H., Robarge, M.J., Howard, I.M., Wittkopp, S.L., George, C., Kopajtic, T., Izenwasser, S., Katz, J.L. J. Med. Chem. (2001) [Pubmed]
  35. Self-administration of cocaine analogs by rats. Roberts, D.C., Phelan, R., Hodges, L.M., Hodges, M.M., Bennett, B., Childers, S., Davies, H. Psychopharmacology (Berl.) (1999) [Pubmed]
  36. A competitive solid-phase enzyme immunoassay for the evaluation of tropane alkaloids in plant material, using anti-DL-tropic acid antibodies. Fliniaux, M.A., Jacquin-Dubreuil, A. Planta Med. (1987) [Pubmed]
  37. Morphological, chemical and functional analysis of catuaba preparations. Kletter, C., Glasl, S., Presser, A., Werner, I., Reznicek, G., Narantuya, S., Cellek, S., Haslinger, E., Jurenitsch, J. Planta Med. (2004) [Pubmed]
WikiGenes - Universities