The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Grik2  -  glutamate receptor, ionotropic, kainate 2...

Mus musculus

Synonyms: AW124492, GluK2, GluR beta-2, GluR-6, GluR6, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Grik2

  • Transsynaptic neuronal loss induced in hippocampal slice cultures by a herpes simplex virus vector expressing the GluR6 subunit of the kainate receptor [1].

Psychiatry related information on Grik2


High impact information on Grik2


Biological context of Grik2


Anatomical context of Grik2

  • The white matter astrocytes were GluR2/3 and GluR6/7 immunopositive, while the gray matter astrocytes displayed primarily GluR6/7 [10].
  • Additionally, synaptic potentiation was significantly reduced in the lateral amygdala of GluR6 but not GluR5 knock-out mice [11].
  • However, KAR function is abolished in mice lacking both GluR5 and GluR6 subunits, indicating that KARs in CA1 stratum radiatum interneurons are heteromeric receptors composed of both subunits [12].
  • In the presence of GYKI 53655, kainate receptor activation dramatically increases the frequency of spontaneous IPSCs in CA1 pyramidal cells from wild-type, as well as GluR6-/-, mice [13].
  • Our findings reveal that KARs comprising GluR5 or GluR6 subunits can either suppress or facilitate glutamatergic excitatory transmission in the SG of acutely prepared adult mouse spinal cord slices [14].

Associations of Grik2 with chemical compounds


Regulatory relationships of Grik2

  • KA2 was usually coexpressed with GluR6, although with a generally lower level of expression [18].
  • In the present study, we show that the GluR6 subunit of KARs is expressed in both substance P- and enkephalin-containing GABAergic projection neurons of the mouse striatum [19].
  • Ablation of GluR5 leads to a higher susceptibility of the network to the oscillogenic and epileptogenic effects of kainate, whereas lack of GluR6 prevents kainate-induced gamma oscillations or epileptiform bursts [20].

Other interactions of Grik2

  • The white matter showed consistent immunoreactivity for AMPA receptor subunit GluR2/3 and KA receptor subunits GluR6/7 and KA2 [10].
  • Additionally, three genes (Ros1, Grik2, and Zfa) were eliminated as possible candidates for vAlb, and several SSLP markers were separated genetically [21].
  • In classic fear-memory tests, mice lacking GluR6 but not GluR5 showed a significant reduction in fear memory when measured 3, 7, or 14 d after training [11].
  • Using this approach, we obtained a panel of high-affinity antibody fragments that immunoprecipitated both recombinant and native GluRD receptors, but not GluR6, a kainate receptor subunit with a 40% sequence similarity [22].
  • Finally, computer modeling suggested that the dimer interface, largely formed by N1, is highly hydrophobic in GluR3, whereas in GluR6 it contains electrostatic interactions, hence offering an explanation for the subtype assembly specificity conferred by this region [23].

Analytical, diagnostic and therapeutic context of Grik2


  1. Transsynaptic neuronal loss induced in hippocampal slice cultures by a herpes simplex virus vector expressing the GluR6 subunit of the kainate receptor. Bergold, P.J., Casaccia-Bonnefil, P., Zeng, X.L., Federoff, H.J. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  2. Experimental basis for the putative role of GluR6/kainate glutamate receptor subunit in Huntington's disease natural history. Diguet, E., Fernagut, P.O., Normand, E., Centelles, L., Mulle, C., Tison, F. Neurobiol. Dis. (2004) [Pubmed]
  3. Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Mulle, C., Sailer, A., Pérez-Otaño, I., Dickinson-Anson, H., Castillo, P.E., Bureau, I., Maron, C., Gage, F.H., Mann, J.R., Bettler, B., Heinemann, S.F. Nature (1998) [Pubmed]
  4. Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Egebjerg, J., Bettler, B., Hermans-Borgmeyer, I., Heinemann, S. Nature (1991) [Pubmed]
  5. The role of RNA editing of kainate receptors in synaptic plasticity and seizures. Vissel, B., Royle, G.A., Christie, B.R., Schiffer, H.H., Ghetti, A., Tritto, T., Perez-Otano, I., Radcliffe, R.A., Seamans, J., Sejnowski, T., Wehner, J.M., Collins, A.C., O'Gorman, S., Heinemann, S.F. Neuron (2001) [Pubmed]
  6. Differential trafficking of GluR7 kainate receptor subunit splice variants. Jaskolski, F., Normand, E., Mulle, C., Coussen, F. J. Biol. Chem. (2005) [Pubmed]
  7. Glucocorticoid adrenal steroids and glucocorticoid-inducible kinase isoforms in the regulation of GluR6 expression. Strutz-Seebohm, N., Seebohm, G., Shumilina, E., Mack, A.F., Wagner, H.J., Lampert, A., Grahammer, F., Henke, G., Just, L., Skutella, T., Hollmann, M., Lang, F. J. Physiol. (Lond.) (2005) [Pubmed]
  8. Low-affinity kainate receptor-mediated events reduce the protective activity of phenobarbital and diphenylhydantoin against maximal electroshock in mice. Borowicz, K.K., Zadrozniak, M., Czuczwar, S.J. Neuropharmacology (2002) [Pubmed]
  9. Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease. Rubinsztein, D.C., Leggo, J., Chiano, M., Dodge, A., Norbury, G., Rosser, E., Craufurd, D. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  10. AMPA/kainate receptors in mouse spinal cord cell-specific display of receptor subunits by oligodendrocytes and astrocytes and at the nodes of Ranvier. Brand-Schieber, E., Werner, P. Glia (2003) [Pubmed]
  11. Altered behavioral responses to noxious stimuli and fear in glutamate receptor 5 (GluR5)- or GluR6-deficient mice. Ko, S., Zhao, M.G., Toyoda, H., Qiu, C.S., Zhuo, M. J. Neurosci. (2005) [Pubmed]
  12. Subunit composition of kainate receptors in hippocampal interneurons. Mulle, C., Sailer, A., Swanson, G.T., Brana, C., O'Gorman, S., Bettler, B., Heinemann, S.F. Neuron (2000) [Pubmed]
  13. Kainate receptor-mediated responses in the CA1 field of wild-type and GluR6-deficient mice. Bureau, I., Bischoff, S., Heinemann, S.F., Mulle, C. J. Neurosci. (1999) [Pubmed]
  14. Modulation of excitatory synaptic transmission in the spinal substantia gelatinosa of mice deficient in the kainate receptor GluR5 and/or GluR6 subunit. Youn, D.H., Randic, M. J. Physiol. (Lond.) (2004) [Pubmed]
  15. Glutamate receptor agonist kainate enhances primary dendrite number and length from immature mouse cortical neurons in vitro. Monnerie, H., Le Roux, P.D. J. Neurosci. Res. (2006) [Pubmed]
  16. Ethanol modifies the effect of handling stress on gene expression: problems in the analysis of two-way gene expression studies in mouse brain. Rulten, S.L., Ripley, T.L., Manerakis, E., Stephens, D.N., Mayne, L.V. Brain Res. (2006) [Pubmed]
  17. Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Köhler, M., Burnashev, N., Sakmann, B., Seeburg, P.H. Neuron (1993) [Pubmed]
  18. Spatial distribution of kainate receptor subunit mRNA in the mouse basal ganglia and ventral mesencephalon. Bischoff, S., Barhanin, J., Bettler, B., Mulle, C., Heinemann, S. J. Comp. Neurol. (1997) [Pubmed]
  19. Functional GluR6 kainate receptors in the striatum: indirect downregulation of synaptic transmission. Chergui, K., Bouron, A., Normand, E., Mulle, C. J. Neurosci. (2000) [Pubmed]
  20. Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. Fisahn, A., Contractor, A., Traub, R.D., Buhl, E.H., Heinemann, S.F., McBain, C.J. J. Neurosci. (2004) [Pubmed]
  21. A high-resolution genetic map around waltzer on mouse chromosome 10 and identification of a new allele of waltzer. Bryda, E.C., Ling, H., Flaherty, L. Mamm. Genome (1997) [Pubmed]
  22. Use of proteoliposomes to generate phage antibodies against native AMPA receptor. Jespersen, L.K., Kuusinen, A., Orellana, A., Keinänen, K., Engberg, J. Eur. J. Biochem. (2000) [Pubmed]
  23. Two regions in the N-terminal domain of ionotropic glutamate receptor 3 form the subunit oligomerization interfaces that control subtype-specific receptor assembly. Ayalon, G., Segev, E., Elgavish, S., Stern-Bach, Y. J. Biol. Chem. (2005) [Pubmed]
  24. Immunohistochemical detection by immersion fixation with Carnoy solution of particular non-N-methyl-D-aspartate receptor subunits in murine hippocampus. Yoneyama, M., Kitayama, T., Taniura, H., Yoneda, Y. Neurochem. Int. (2004) [Pubmed]
  25. Localization of kainate receptors at the cone pedicles of the primate retina. Haverkamp, S., Grünert, U., Wässle, H. J. Comp. Neurol. (2001) [Pubmed]
  26. Expression of ionotropic glutamate receptor genes by P19 embryonal carcinoma cells. Ray, W.J., Gottlieb, D.I. Biochem. Biophys. Res. Commun. (1993) [Pubmed]
WikiGenes - Universities