The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Lymphocytic Choriomeningitis

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Lymphocytic Choriomeningitis


High impact information on Lymphocytic Choriomeningitis


Chemical compound and disease context of Lymphocytic Choriomeningitis

  • Here, we report about persistent infections of lymphocytic choriomeningitis virus treated with fluorouracil, where a progressive debilitation of infectivity leading to eventual extinction occurs [11].
  • It has been demonstrated that murine memory CD8+ T-cell precursors specific for acute lymphocytic choriomeningitis virus express interleukin-7 receptor alpha (IL-7Ralpha), and IL-7 is involved in maintaining memory populations after the clearance of antigen [12].
  • At 0.5-1 microM lactacystin, the presentation of the lymphocytic choriomeningitis virus-derived epitopes NP118 and GP33 and the mouse CMV epitope pp89-168 were reduced and were further diminished in a dose-dependent manner with increasing concentrations [13].
  • The SP of the pre-glycoprotein (pGP-C) of the lymphocytic choriomeningitis virus SPGP-C (signal peptide of pGP-C) shows different properties: 1) The SPGP-C is unusually long (58 amino acid residues) and contains two hydrophobic segments interrupted by a lysine residue [14].
  • Presentation of the lymphocytic choriomeningitis virus-derived epitope GP276, in contrast, was markedly enhanced at low, but abrogated at higher, concentrations of either lactacystin or epoxomicin [13].

Biological context of Lymphocytic Choriomeningitis


Anatomical context of Lymphocytic Choriomeningitis


Gene context of Lymphocytic Choriomeningitis


Analytical, diagnostic and therapeutic context of Lymphocytic Choriomeningitis


  1. Lower receptor avidity required for thymic clonal deletion than for effector T-cell function. Pircher, H., Rohrer, U.H., Moskophidis, D., Zinkernagel, R.M., Hengartner, H. Nature (1991) [Pubmed]
  2. Memory CD8+ T cells in heterologous antiviral immunity and immunopathology in the lung. Chen, H.D., Fraire, A.E., Joris, I., Brehm, M.A., Welsh, R.M., Selin, L.K. Nat. Immunol. (2001) [Pubmed]
  3. Focal expression of interleukin-2 does not break unresponsiveness to "self" (viral) antigen expressed in beta cells but enhances development of autoimmune disease (diabetes) after initiation of an anti-self immune response. von Herrath, M.G., Allison, J., Miller, J.F., Oldstone, M.B. J. Clin. Invest. (1995) [Pubmed]
  4. Granzyme A-deficient mice retain potent cell-mediated cytotoxicity. Ebnet, K., Hausmann, M., Lehmann-Grube, F., Müllbacher, A., Kopf, M., Lamers, M., Simon, M.M. EMBO J. (1995) [Pubmed]
  5. Recombinant lymphocytic choriomeningitis virus expressing vesicular stomatitis virus glycoprotein. Pinschewer, D.D., Perez, M., Sanchez, A.B., de la Torre, J.C. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  6. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Lowin, B., Hahne, M., Mattmann, C., Tschopp, J. Nature (1994) [Pubmed]
  7. Peptide antigen treatment of naive and virus-immune mice: antigen-specific tolerance versus immunopathology. Aichele, P., Brduscha-Riem, K., Oehen, S., Odermatt, B., Zinkernagel, R.M., Hengartner, H., Pircher, H. Immunity (1997) [Pubmed]
  8. Enhanced T cell responses due to diacylglycerol kinase zeta deficiency. Zhong, X.P., Hainey, E.A., Olenchock, B.A., Jordan, M.S., Maltzman, J.S., Nichols, K.E., Shen, H., Koretzky, G.A. Nat. Immunol. (2003) [Pubmed]
  9. SAP controls T cell responses to virus and terminal differentiation of TH2 cells. Wu, C., Nguyen, K.B., Pien, G.C., Wang, N., Gullo, C., Howie, D., Sosa, M.R., Edwards, M.J., Borrow, P., Satoskar, A.R., Sharpe, A.H., Biron, C.A., Terhorst, C. Nat. Immunol. (2001) [Pubmed]
  10. Modification of cysteine residues in vitro and in vivo affects the immunogenicity and antigenicity of major histocompatibility complex class I-restricted viral determinants. Chen, W., Yewdell, J.W., Levine, R.L., Bennink, J.R. J. Exp. Med. (1999) [Pubmed]
  11. Suppression of viral infectivity through lethal defection. Grande-Pérez, A., Lázaro, E., Lowenstein, P., Domingo, E., Manrubia, S.C. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  12. IL-7 receptor alpha chain expression distinguishes functional subsets of virus-specific human CD8+ T cells. van Leeuwen, E.M., de Bree, G.J., Remmerswaal, E.B., Yong, S.L., Tesselaar, K., ten Berge, I.J., van Lier, R.A. Blood (2005) [Pubmed]
  13. The selective proteasome inhibitors lactacystin and epoxomicin can be used to either up- or down-regulate antigen presentation at nontoxic doses. Schwarz, K., de Giuli, R., Schmidtke, G., Kostka, S., van den Broek, M., Kim, K.B., Crews, C.M., Kraft, R., Groettrup, M. J. Immunol. (2000) [Pubmed]
  14. Long-lived signal peptide of lymphocytic choriomeningitis virus glycoprotein pGP-C. Froeschke, M., Basler, M., Groettrup, M., Dobberstein, B. J. Biol. Chem. (2003) [Pubmed]
  15. Cross-presentation of the long-lived lymphocytic choriomeningitis virus nucleoprotein does not require neosynthesis and is enhanced via heat shock proteins. Basta, S., Stoessel, R., Basler, M., van den Broek, M., Groettrup, M. J. Immunol. (2005) [Pubmed]
  16. CD8+ T lymphocytes in double alpha beta TCR transgenic mice. I. TCR expression and thymus selection in the absence or in the presence of self-antigen. Legrand, N., Freitas, A.A. J. Immunol. (2001) [Pubmed]
  17. MHC class I and non-MHC-linked capacity for generating an anti-viral CTL response determines susceptibility to CTL exhaustion and establishment of virus persistence in mice. Moskophidis, D., Lechner, F., Hengartner, H., Zinkernagel, R.M. J. Immunol. (1994) [Pubmed]
  18. Chemokine gene expression in the brains of mice with lymphocytic choriomeningitis. Asensio, V.C., Campbell, I.L. J. Virol. (1997) [Pubmed]
  19. Molecular determinants of macrophage tropism and viral persistence: importance of single amino acid changes in the polymerase and glycoprotein of lymphocytic choriomeningitis virus. Matloubian, M., Kolhekar, S.R., Somasundaram, T., Ahmed, R. J. Virol. (1993) [Pubmed]
  20. Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence. Ahmed, R., Salmi, A., Butler, L.D., Chiller, J.M., Oldstone, M.B. J. Exp. Med. (1984) [Pubmed]
  21. Viral infection of transgenic mice expressing a viral protein in oligodendrocytes leads to chronic central nervous system autoimmune disease. Evans, C.F., Horwitz, M.S., Hobbs, M.V., Oldstone, M.B. J. Exp. Med. (1996) [Pubmed]
  22. Immunotherapy with dendritic cells and tumor major histocompatibility complex class I-derived peptides requires a high density of antigen on tumor cells. Rawson, P., Hermans, I.F., Huck, S.P., Roberts, J.M., Pircher, H., Ronchese, F. Cancer Res. (2000) [Pubmed]
  23. Reduction of antiviral CD8 lymphocytes in vivo with dendritic cells expressing Fas ligand-increased survival of viral (lymphocytic choriomeningitis virus) central nervous system infection. Wolfe, T., Asseman, C., Hughes, A., Matsue, H., Takashima, A., von Herrath, M.G. J. Immunol. (2002) [Pubmed]
  24. Ly9 (CD229)-deficient mice exhibit T cell defects yet do not share several phenotypic characteristics associated with SLAM- and SAP-deficient mice. Graham, D.B., Bell, M.P., McCausland, M.M., Huntoon, C.J., van Deursen, J., Faubion, W.A., Crotty, S., McKean, D.J. J. Immunol. (2006) [Pubmed]
  25. The role of CC chemokine receptor 5 in antiviral immunity. Nansen, A., Christensen, J.P., Andreasen, S.Ø., Bartholdy, C., Christensen, J.E., Thomsen, A.R. Blood (2002) [Pubmed]
  26. MHC class I molecule-restricted presentation of viral antigen in beta 2-microglobulin-deficient mice. Lehmann-Grube, F., Dralle, H., Utermöhlen, O., Löhler, J. J. Immunol. (1994) [Pubmed]
  27. CD40-CD40 ligand costimulation is required for generating antiviral CD4 T cell responses but is dispensable for CD8 T cell responses. Whitmire, J.K., Flavell, R.A., Grewal, I.S., Larsen, C.P., Pearson, T.C., Ahmed, R. J. Immunol. (1999) [Pubmed]
  28. Among CXCR3 chemokines, IFN-gamma-inducible protein of 10 kDa (CXC chemokine ligand (CXCL) 10) but not monokine induced by IFN-gamma (CXCL9) imprints a pattern for the subsequent development of autoimmune disease. Christen, U., McGavern, D.B., Luster, A.D., von Herrath, M.G., Oldstone, M.B. J. Immunol. (2003) [Pubmed]
  29. Primary and secondary immunocompetence in mixed allogeneic chimeras. Williams, M.A., Adams, A.B., Walsh, M.B., Shirasugi, N., Onami, T.M., Pearson, T.C., Ahmed, R., Larsen, C.P. J. Immunol. (2003) [Pubmed]
  30. Peptide-induced antiviral protection by cytotoxic T cells. Schulz, M., Zinkernagel, R.M., Hengartner, H. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  31. Cutting edge: CD8 T cells specific for lymphocytic choriomeningitis virus require type I IFN receptor for clonal expansion. Aichele, P., Unsoeld, H., Koschella, M., Schweier, O., Kalinke, U., Vucikuja, S. J. Immunol. (2006) [Pubmed]
  32. Expression of the inducible nitric oxide synthase. Correlation with neuropathology and clinical features in mice with lymphocytic choriomeningitis. Campbell, I.L., Samimi, A., Chiang, C.S. J. Immunol. (1994) [Pubmed]
  33. Antiviral cytotoxic T-cell memory by vaccination with recombinant Listeria monocytogenes. Slifka, M.K., Shen, H., Matloubian, M., Jensen, E.R., Miller, J.F., Ahmed, R. J. Virol. (1996) [Pubmed]
  34. Preservation of graft-versus-infection effects after suicide gene therapy for prevention of graft-versus-host disease. Cohen, J.L., Saron, M.F., Boyer, O., Thomas-Vaslin, V., Bellier, B., Lejeune, L., Charlotte, F., Klatzmann, D. Hum. Gene Ther. (2000) [Pubmed]
WikiGenes - Universities