The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

srtA  -  sortase

Staphylococcus aureus RF122

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of srtA

 

High impact information on srtA

 

Chemical compound and disease context of srtA

 

Biological context of srtA

 

Anatomical context of srtA

  • Thus, L. monocytogenes srtA is required for the cell wall anchoring of InlA and, presumably, for the anchoring of other LPXTG-containing proteins that are involved in listerial infections [2].
  • Furthermore, the srtA mutant had reduced binding to immobilized human fibronectin and had a decreased ability to colonize the oral mucosa of mice [15].
  • This phenomenon demonstrates the involvement of host neutrophils; when these cells were depleted, sortase mutant staphylococci caused severe systemic infection, although not septic arthritis [16].
 

Associations of srtA with chemical compounds

  • S. aureus strain Newman variants lacking the capacity for synthesizing polysaccharide capsule (capFO), poly-N-acetylglucosamine (icaAC), lipoprotein (lgt), cell wall-anchored proteins (srtA), or the glycolipid anchor of lipoteichoic acid (ypfP) bound GFP-CWT similar to wild-type staphylococci [17].
  • Sortase cleaves surface proteins at the LPXTG motif and catalyzes the formation of an amide bond between the carboxyl group of threonine (T) and the amino group of cell-wall crossbridges [5].
  • Sortase cleaves polypeptides between the threonine and the glycine of the LPXTG motif [9].
  • The three-dimensional structure of sortase revealed the close proximity of the catalytic site residue cysteine 184 with histidine 120; however, no structural evidence for a thiolate-imidazolium ion pair could be detected [9].
  • Further, alanine substitution of tryptophan 194, a residue that is in close proximity of histidine 120, reduces the transpeptidase activity of sortase [9].
 

Other interactions of srtA

 

Analytical, diagnostic and therapeutic context of srtA

  • OBJECTIVE: The role that the surface proteins anchored by the srtA and srtB gene products play in the ability of Staphylococcus aureus bacteria to establish infection was investigated in several animal models [3].
  • CONCLUSION: Results from this study substantiate the role of the srtA gene product in the establishment of infections and further studies are warranted to define and exploit this as a target for antimicrobial chemotherapy [3].
  • Mean bacterial counts in cardiac vegetations were significantly higher for the wild-type and srtB- strain compared with the srtA- and srtA-B- strains [3].
  • Additionally, using Western-blot analysis, we have been able to demonstrate that a biotinylated version of the peptidyl-diazomethane analogue, biotin-Ahx (aminohexanoyl)-Leu-Pro-Ala-Thr-CHN(2) (III), can be used as an affinity label to detect the presence of wild-type SrtA in crude cell lysates prepared from S. aureus [22].
  • In addition, using immunofluorescence, cell adhesion assays, and transmission electron microscopy, we establish links between in vitro substrate specificity and in vivo function of the S. aureus sortase isoforms [23].

References

  1. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Mazmanian, S.K., Liu, G., Ton-That, H., Schneewind, O. Science (1999) [Pubmed]
  2. Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Bierne, H., Mazmanian, S.K., Trost, M., Pucciarelli, M.G., Liu, G., Dehoux, P., Jänsch, L., Garcia-del Portillo, F., Schneewind, O., Cossart, P. Mol. Microbiol. (2002) [Pubmed]
  3. Effect of srtA and srtB gene expression on the virulence of Staphylococcus aureus in animal models of infection. Weiss, W.J., Lenoy, E., Murphy, T., Tardio, L., Burgio, P., Projan, S.J., Schneewind, O., Alksne, L. J. Antimicrob. Chemother. (2004) [Pubmed]
  4. The role of Staphylococcus aureus sortase A and sortase B in murine arthritis. Jonsson, I.M., Mazmanian, S.K., Schneewind, O., Bremell, T., Tarkowski, A. Microbes Infect. (2003) [Pubmed]
  5. Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. Ilangovan, U., Ton-That, H., Iwahara, J., Schneewind, O., Clubb, R.T. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  6. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Ton-That, H., Liu, G., Mazmanian, S.K., Faull, K.F., Schneewind, O. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  7. Anchor structure of staphylococcal surface proteins. V. Anchor structure of the sortase B substrate IsdC. Marraffini, L.A., Schneewind, O. J. Biol. Chem. (2005) [Pubmed]
  8. Sortase from Staphylococcus aureus does not contain a thiolate-imidazolium ion pair in its active site. Connolly, K.M., Smith, B.T., Pilpa, R., Ilangovan, U., Jung, M.E., Clubb, R.T. J. Biol. Chem. (2003) [Pubmed]
  9. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Cysteine 184 and histidine 120 of sortase form a thiolate-imidazolium ion pair for catalysis. Ton-That, H., Mazmanian, S.K., Alksne, L., Schneewind, O. J. Biol. Chem. (2002) [Pubmed]
  10. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. A conserved arginine residue is required for efficient catalysis of sortase A. Marraffini, L.A., Ton-That, H., Zong, Y., Narayana, S.V., Schneewind, O. J. Biol. Chem. (2004) [Pubmed]
  11. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mazmanian, S.K., Ton-That, H., Schneewind, O. Mol. Microbiol. (2001) [Pubmed]
  12. Differential recognition of surface proteins in Streptococcus pyogenes by two sortase gene homologs. Barnett, T.C., Scott, J.R. J. Bacteriol. (2002) [Pubmed]
  13. Crystal structures of Staphylococcus aureus sortase A and its substrate complex. Zong, Y., Bice, T.W., Ton-That, H., Schneewind, O., Narayana, S.V. J. Biol. Chem. (2004) [Pubmed]
  14. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH(2)-Gly(3) substrates. Ton-That, H., Mazmanian, S.K., Faull, K.F., Schneewind, O. J. Biol. Chem. (2000) [Pubmed]
  15. Inactivation of the srtA gene in Streptococcus gordonii inhibits cell wall anchoring of surface proteins and decreases in vitro and in vivo adhesion. Bolken, T.C., Franke, C.A., Jones, K.F., Zeller, G.O., Jones, C.H., Dutton, E.K., Hruby, D.E. Infect. Immun. (2001) [Pubmed]
  16. On the role of Staphylococcus aureus sortase and sortase-catalyzed surface protein anchoring in murine septic arthritis. Jonsson, I.M., Mazmanian, S.K., Schneewind, O., Verdrengh, M., Bremell, T., Tarkowski, A. J. Infect. Dis. (2002) [Pubmed]
  17. Cross-linked peptidoglycan mediates lysostaphin binding to the cell wall envelope of Staphylococcus aureus. Gründling, A., Schneewind, O. J. Bacteriol. (2006) [Pubmed]
  18. Identification and characterization of a novel 38.5-kilodalton cell surface protein of Staphylococcus aureus with extended-spectrum binding activity for extracellular matrix and plasma proteins. Hussain, M., Becker, K., von Eiff, C., Schrenzel, J., Peters, G., Herrmann, M. J. Bacteriol. (2001) [Pubmed]
  19. The sortase SrtA of Listeria monocytogenes is involved in processing of internalin and in virulence. Garandeau, C., Réglier-Poupet, H., Dubail, I., Beretti, J.L., Berche, P., Charbit, A. Infect. Immun. (2002) [Pubmed]
  20. Immunization with Staphylococcus aureus clumping factor B, a major determinant in nasal carriage, reduces nasal colonization in a murine model. Schaffer, A.C., Solinga, R.M., Cocchiaro, J., Portoles, M., Kiser, K.B., Risley, A., Randall, S.M., Valtulina, V., Speziale, P., Walsh, E., Foster, T., Lee, J.C. Infect. Immun. (2006) [Pubmed]
  21. Inhibition of sortase-mediated Staphylococcus aureus adhesion to fibronectin via fibronectin-binding protein by sortase inhibitors. Oh, K.B., Oh, M.N., Kim, J.G., Shin, D.S., Shin, J. Appl. Microbiol. Biotechnol. (2006) [Pubmed]
  22. Irreversible inhibition of the bacterial cysteine protease-transpeptidase sortase (SrtA) by substrate-derived affinity labels. Scott, C.J., McDowell, A., Martin, S.L., Lynas, J.F., Vandenbroeck, K., Walker, B. Biochem. J. (2002) [Pubmed]
  23. Analysis of the substrate specificity of the Staphylococcus aureus sortase transpeptidase SrtA. Kruger, R.G., Otvos, B., Frankel, B.A., Bentley, M., Dostal, P., McCafferty, D.G. Biochemistry (2004) [Pubmed]
 
WikiGenes - Universities