The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

XRCC2  -  X-ray repair complementing defective...

Homo sapiens

Synonyms: DNA repair protein XRCC2, X-ray repair cross-complementing protein 2
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of XRCC2


High impact information on XRCC2

  • Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation [7].
  • We find that hamster cells deficient in XRCC2 show more than a 100-fold decrease in HR induced by double-strand breaks compared with the parental cell line [8].
  • Here we show that XRCC2 is essential for the efficient repair of DNA double-strand breaks by homologous recombination between sister chromatids [8].
  • This defect is corrected to almost wild-type levels by transient transfection with a plasmid expressing XRCC2 [8].
  • Several mammalian genes have been implicated in repair by homologous recombination on the basis of their sequence homology to yeast Rad51: one of these is human XRCC2 [8].

Chemical compound and disease context of XRCC2

  • Moreover, the inverse association between plasma folate level and breast cancer risk was stronger among XRCC2 188His carriers (P, trend = 0.004) than non-carriers (P, trend = 0.09) [9].

Biological context of XRCC2


Anatomical context of XRCC2

  • In eukaryotic cells, the Rad51 paralogs (XRCC2/3, Rad51B/C/D) are involved in this process, although their exact functions are largely undetermined [14].
  • We show that a radiosensitive cell line, mutant for the RAD51 homolog XRCC2 and defective in homologous recombination repair (HRR), displays significantly diminished caffeine radiosensitization that can be restored by expression of XRCC2 [13].
  • We evaluate here whether RAD51 and its paralogues XRCC2 and XRCC3 act via a common pathway for sensitivity to genotoxic stress, centrosome fragmentation and chromosome stability [15].
  • Despite this function, the XRCC2 gene transcript is expressed at a very low level in somatic tissue, but is elevated in mouse testis, suggesting an additional role in meiosis [16].
  • We investigated the effect of XRCC2 Arg(188)His and XRCC3 Thr(241)Met polymorphisms in cancer proneness in 121 oral/pharynx cancer cases, 129 larynx cancer cases and 172 noncancer controls, all Caucasian smokers [5].

Associations of XRCC2 with chemical compounds

  • A naturally occurring genetic variant of human XRCC2 (R188H) confers increased resistance to cisplatin-induced DNA damage [3].
  • Thus 342delT suppresses recombination induced by thymidine in a dominant negative manner while recombination induced by DSBs appears to depend upon the level of XRCC2 as well as the expression of the mutant XRCC2 allele [17].
  • These results suggest that XRCC2 is involved in repair of HU-induced damage, but not thymidine-induced damage, at the stalled replication forks [18].

Regulatory relationships of XRCC2


Other interactions of XRCC2

  • In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks (ICLs) [20].
  • Analysis of the XRCC2 mutation in irs1 implies that XRCC2's function is not essential for viability in cultured hamster cells [10].
  • This finding indicates that the XRCC2-RAD51D complex is conserved in lower eukaryotes [21].
  • In addition, we find that Rad51C, but not XRCC3, interacts directly or indirectly with Rad51B, Rad51D and XRCC2 [22].
  • No mutations in the XRCC2 gene in BRCA1/2-negative high-risk breast cancer families [23].

Analytical, diagnostic and therapeutic context of XRCC2


  1. Evidence for simultaneous protein interactions between human Rad51 paralogs. Schild, D., Lio, Y.C., Collins, D.W., Tsomondo, T., Chen, D.J. J. Biol. Chem. (2000) [Pubmed]
  2. Variants in DNA double-strand break repair genes and breast cancer susceptibility. Kuschel, B., Auranen, A., McBride, S., Novik, K.L., Antoniou, A., Lipscombe, J.M., Day, N.E., Easton, D.F., Ponder, B.A., Pharoah, P.D., Dunning, A. Hum. Mol. Genet. (2002) [Pubmed]
  3. A naturally occurring genetic variant of human XRCC2 (R188H) confers increased resistance to cisplatin-induced DNA damage. Danoy, P., Sonoda, E., Lathrop, M., Takeda, S., Matsuda, F. Biochem. Biophys. Res. Commun. (2007) [Pubmed]
  4. Polymorphisms in DNA double-strand break repair genes and skin cancer risk. Han, J., Colditz, G.A., Samson, L.D., Hunter, D.J. Cancer Res. (2004) [Pubmed]
  5. DNA repair gene XRCC2 and XRCC3 polymorphisms and susceptibility to cancers of the upper aerodigestive tract. Benhamou, S., Tuimala, J., Bouchardy, C., Dayer, P., Sarasin, A., Hirvonen, A. Int. J. Cancer (2004) [Pubmed]
  6. XRCC2 and XRCC3 gene polymorphism and risk of pancreatic cancer. Jiao, L., Hassan, M.M., Bondy, M.L., Wolff, R.A., Evans, D.B., Abbruzzese, J.L., Li, D. Am. J. Gastroenterol. (2008) [Pubmed]
  7. Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation. Sale, J.E., Calandrini, D.M., Takata, M., Takeda, S., Neuberger, M.S. Nature (2001) [Pubmed]
  8. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Johnson, R.D., Liu, N., Jasin, M. Nature (1999) [Pubmed]
  9. Interaction between genetic variations in DNA repair genes and plasma folate on breast cancer risk. Han, J., Hankinson, S.E., Zhang, S.M., De Vivo, I., Hunter, D.J. Cancer Epidemiol. Biomarkers Prev. (2004) [Pubmed]
  10. XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Liu, N., Lamerdin, J.E., Tebbs, R.S., Schild, D., Tucker, J.D., Shen, M.R., Brookman, K.W., Siciliano, M.J., Walter, C.A., Fan, W., Narayana, L.S., Zhou, Z.Q., Adamson, A.W., Sorensen, K.J., Chen, D.J., Jones, N.J., Thompson, L.H. Mol. Cell (1998) [Pubmed]
  11. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. De Silva, I.U., McHugh, P.J., Clingen, P.H., Hartley, J.A. Mol. Cell. Biol. (2000) [Pubmed]
  12. The RAD51 family member, RAD51L3, is a DNA-stimulated ATPase that forms a complex with XRCC2. Braybrooke, J.P., Spink, K.G., Thacker, J., Hickson, I.D. J. Biol. Chem. (2000) [Pubmed]
  13. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants. Asaad, N.A., Zeng, Z.C., Guan, J., Thacker, J., Iliakis, G. Oncogene (2000) [Pubmed]
  14. XRCC3 ATPase activity is required for normal XRCC3-Rad51C complex dynamics and homologous recombination. Yamada, N.A., Hinz, J.M., Kopf, V.L., Segalle, K.D., Thompson, L.H. J. Biol. Chem. (2004) [Pubmed]
  15. Genetic interactions between RAD51 and its paralogues for centrosome fragmentation and ploidy control, independently of the sensitivity to genotoxic stresses. Daboussi, F., Thacker, J., Lopez, B.S. Oncogene (2005) [Pubmed]
  16. The XRCC2 DNA repair gene from human and mouse encodes a novel member of the recA/RAD51 family. Cartwright, R., Tambini, C.E., Simpson, P.J., Thacker, J. Nucleic Acids Res. (1998) [Pubmed]
  17. A tumour-derived mutant allele of XRCC2 preferentially suppresses homologous recombination at DNA replication forks. Mohindra, A., Bolderson, E., Stone, J., Wells, M., Helleday, T., Meuth, M. Hum. Mol. Genet. (2004) [Pubmed]
  18. Differential roles of XRCC2 in homologous recombinational repair of stalled replication forks. Liu, N., Lim, C.S. J. Cell. Biochem. (2005) [Pubmed]
  19. hXRCC2 enhances ADP/ATP processing and strand exchange by hRAD51. Shim, K.S., Schmutte, C., Tombline, G., Heinen, C.D., Fishel, R. J. Biol. Chem. (2004) [Pubmed]
  20. Disparate requirements for the Walker A and B ATPase motifs of human RAD51D in homologous recombination. Wiese, C., Hinz, J.M., Tebbs, R.S., Nham, P.B., Urbin, S.S., Collins, D.W., Thompson, L.H., Schild, D. Nucleic Acids Res. (2006) [Pubmed]
  21. Sws1 is a conserved regulator of homologous recombination in eukaryotic cells. Martín, V., Chahwan, C., Gao, H., Blais, V., Wohlschlegel, J., Yates, J.R., McGowan, C.H., Russell, P. EMBO J. (2006) [Pubmed]
  22. Interactions involving the Rad51 paralogs Rad51C and XRCC3 in human cells. Wiese, C., Collins, D.W., Albala, J.S., Thompson, L.H., Kronenberg, A., Schild, D. Nucleic Acids Res. (2002) [Pubmed]
  23. No mutations in the XRCC2 gene in BRCA1/2-negative high-risk breast cancer families. Rodríguez-López, R., Osorio, A., Sánchez-Pulido, L., De La Hoya, M., Barroso, A., Caldés, T., Benítez, J. Int. J. Cancer (2003) [Pubmed]
  24. Involvement of Rad51C in two distinct protein complexes of Rad51 paralogs in human cells. Liu, N., Schild, D., Thelen, M.P., Thompson, L.H. Nucleic Acids Res. (2002) [Pubmed]
  25. A potential role for the XRCC2 R188H polymorphic site in DNA-damage repair and breast cancer. Rafii, S., O'Regan, P., Xinarianos, G., Azmy, I., Stephenson, T., Reed, M., Meuth, M., Thacker, J., Cox, A. Hum. Mol. Genet. (2002) [Pubmed]
  26. Genetic polymorphisms in the DNA double-strand break repair genes XRCC3, XRCC2, and NBS1 are not associated with acute side effects of radiotherapy in breast cancer patients. Popanda, O., Tan, X.L., Ambrosone, C.B., Kropp, S., Helmbold, I., von Fournier, D., Haase, W., Sautter-Bihl, M.L., Wenz, F., Schmezer, P., Chang-Claude, J. Cancer Epidemiol. Biomarkers Prev. (2006) [Pubmed]
WikiGenes - Universities