The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Laryngeal Neoplasms

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Laryngeal Neoplasms

 

Psychiatry related information on Laryngeal Neoplasms

 

High impact information on Laryngeal Neoplasms

  • SAHSU analysed the incidence of cancers of the larynx and lung near the incinerator of waste solvents and oils at Charnock Richard, Coppull, Lancashire (which operated between 1972 and 1980) and nine other similar incinerators in Great Britain, after reports of a cluster of cases of cancer of the larynx near the Charnock Richard site [8].
  • Moreover, a positive interaction was found between mEH activity and GSTM3 genotype for laryngeal cancer [9].
  • Correlation of p53 and the proto-oncogene eIF4E in larynx cancers: prognostic implications [10].
  • The tumor marker eIF4E is overexpressed in 100% of larynx cancers, and overexpression of eIF4E in histologically "tumor-free" margins predicts a significantly higher recurrence [10].
  • METHODS: Patients with advanced laryngeal cancer received two cycles of cisplatin 100 mg/m2 and fluorouracil (5-Fu) 1,000 mg/m2/d for 5 days [11].
 

Chemical compound and disease context of Laryngeal Neoplasms

 

Biological context of Laryngeal Neoplasms

 

Anatomical context of Laryngeal Neoplasms

  • Altogether, our data allow us to speculate that the increased insulin effectiveness we observed in the larynx carcinoma cell line HEp-2 after androgen treatment might be involved in the regulation of larynx cancer cells growth [20].
  • CONCLUSIONS: The present study helps to establish EMMPRIN as a widely expressed protein in dysplastic mucosa and supraglottic laryngeal cancer, but not in normal epithelial counterparts [21].
  • A standard immunoradiometric technique was used to investigate the distribution of the intracellular aspartic proteinase cathepsin D in 33 malignant and in the corresponding histologically-proven non-malignant fragments obtained from lymph node negative patients suffering from larynx cancer [22].
  • Heavy drinkers, i.e. males who drank 90 g ethanol daily had an approximately 15-fold risk of cancer of the oral cavity, an 11-fold risk of pharyngeal cancer and an 11-fold risk of laryngeal cancer compared with non-drinkers [23].
  • Laryngeal cancer cells and mast cells may control the angiogenic response by releasing VEGF [24].
 

Gene context of Laryngeal Neoplasms

  • RESULTS: Neither the putative risk genotypes ADH1B*2/*1 (OR 0.86, 95% confidence interval (CI): 0.41-1.82) or ADH1C*1/*1 (OR 1.06, CI 0.7-1.62) nor GSTM1 null (OR 0.94, CI 0.62-1.42) or GSTT1 null (OR 1.34, CI 0.74-2.42) were associated with an overall increased risk for laryngeal cancer [25].
  • Individuals with concurrent lack of GSTM1 and GSTT1 genes had a doubled, although not significant, risk for larynx cancer when compared with those having at least one of these genes (OR = 2.0, 95% CI = 0.8-5.2) and had almost a 3-fold risk (OR = 2.7, 95% CI = 1.0-7.4) when compared with those with both genes [26].
  • Impairment of MLH1 and CDKN2A in oncogenesis of laryngeal cancer [27].
  • PURPOSE: To evaluate EGFR and HER2 copy number changes and to assess their significance to tumor progression in a large group of patients with larynx cancer through the construction of a tissue microarray (TMA) consisting of 1,385 biopsies [28].
  • CONCLUSION: Our results suggest that shRNA directed against hTERT inhibits telomerase activity through suppression of the hTERT expression in laryngeal cancer cells and that RNA interfering technology may be a promising strategy for the treatment of laryngeal cancers [29].
 

Analytical, diagnostic and therapeutic context of Laryngeal Neoplasms

  • PURPOSE: To evaluate the effectiveness of 2-[fluorine 18]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) in the identification of early stage (T1-T2) primary and recurrent laryngeal cancer [30].
  • PURPOSE: To study the role of two possible prognostic factors, p53 and tumor bulk, and their interaction with other tumor and treatment variables in early-stage laryngeal cancer patients treated with curative radiotherapy [31].
  • SUBJECTS: A total of 97 patients with advanced laryngeal cancer (46 Stage III, 51 Stage IV) were given a single course of induction chemotherapy (cisplatin 100 mg/m2 on Day 1 and 5-FU 1,000 mg/m2/day x 5 days), followed by assessment of response [32].
  • METHODS AND MATERIALS: Paraffin-embedded tumor samples from 90 laryngeal cancer patients were stained for cyclin A and the Ki-67 antigen by immunohistochemistry [33].
  • PURPOSE: To visualize directly a sequence of genetic changes underlying the entire spectrum of epithelial hyperplastic laryngeal lesions (EHLL) and laryngeal cancer by the use of non-isotopic in situ hybridization (ISH) for chromosomes 7 and 17 in correlation with overexpression of p53 protein and epidermal growth factor receptor (EGFR) [34].

References

  1. Substantially reduced risk of cancer of the aerodigestive tract in subjects with variant--463A of the myeloperoxidase gene. Cascorbi, I., Henning, S., Brockmöller, J., Gephart, J., Meisel, C., Müller, J.M., Loddenkemper, R., Roots, I. Cancer Res. (2000) [Pubmed]
  2. Direct cell-cell interaction enhances pro-MMP-2 production and activation in co-culture of laryngeal cancer cells and fibroblasts: involvement of EMMPRIN and MT1-MMP. Suzuki, S., Sato, M., Senoo, H., Ishikawa, K. Exp. Cell Res. (2004) [Pubmed]
  3. Aryl hydrocarbon hydroxylase in persons with lung or laryngeal cancer. Ward, E., Paigen, B., Steenland, K., Vincent, R., Minowada, J., Gurtoo, H.L., Sartori, P., Havens, M.B. Int. J. Cancer (1978) [Pubmed]
  4. Association between early-onset breast and laryngeal cancers. Jaworowska, E., Masojć, B., Tarnowska, C., Brzosko, M., Fliciński, J., Serrano-Fernandez, P., Matyjasik, J., Amernik, K., Scott, R.J., Lubiński, J. Breast Cancer Res. Treat. (2006) [Pubmed]
  5. Cancer mortality in chrysotile mining and milling: exposure-response. Liddell, D. The Annals of occupational hygiene. (1994) [Pubmed]
  6. ECT administration in a patient after craniotomy and gamma knife surgery: a case report and review. Gursky, J.T., Rummans, T.A., Black, J.L. The journal of ECT. (2000) [Pubmed]
  7. What is the evidence that gastroesophageal reflux is involved in the etiology of laryngeal cancer? Wilson, J.A. Current opinion in otolaryngology & head and neck surgery. (2005) [Pubmed]
  8. Incidence of cancers of the larynx and lung near incinerators of waste solvents and oils in Great Britain. Elliott, P., Hills, M., Beresford, J., Kleinschmidt, I., Jolley, D., Pattenden, S., Rodrigues, L., Westlake, A., Rose, G. Lancet (1992) [Pubmed]
  9. High-activity microsomal epoxide hydrolase genotypes and the risk of oral, pharynx, and larynx cancers. Jourenkova-Mironova, N., Mitrunen, K., Bouchardy, C., Dayer, P., Benhamou, S., Hirvonen, A. Cancer Res. (2000) [Pubmed]
  10. Correlation of p53 and the proto-oncogene eIF4E in larynx cancers: prognostic implications. Nathan, C.A., Sanders, K., Abreo, F.W., Nassar, R., Glass, J. Cancer Res. (2000) [Pubmed]
  11. Chemotherapy followed by accelerated fractionated radiation for larynx preservation in patients with advanced laryngeal cancer. Eisbruch, A., Thornton, A.F., Urba, S., Esclamado, R.M., Carroll, W.R., Bradford, C.R., Hazuka, M.B., Littles, F.J., Strawderman, M., Wolf, G.T. J. Clin. Oncol. (1996) [Pubmed]
  12. Role of diet in cancer incidence in Hawaii. Kolonel, L.N., Nomura, A.M., Hinds, M.W., Hirohata, T., Hankin, J.H., Lee, J. Cancer Res. (1983) [Pubmed]
  13. Growth-inhibitory effect of tamoxifen and quercetin and presence of type II estrogen binding sites in human laryngeal cancer cell lines and primary laryngeal tumors. Ferrandina, G., Almadori, G., Maggiano, N., Lanza, P., Ferlini, C., Cattani, P., Piantelli, M., Scambia, G., Ranelletti, F.O. Int. J. Cancer (1998) [Pubmed]
  14. Association of arylamine N-acetyltransferases NAT1 and NAT2 genotypes to laryngeal cancer risk. Henning, S., Cascorbi, I., Münchow, B., Jahnke, V., Roots, I. Pharmacogenetics (1999) [Pubmed]
  15. Carotene intake and the risk of laryngeal cancer in coastal Texas. Mackerras, D., Buffler, P.A., Randall, D.E., Nichaman, M.Z., Pickle, L.W., Mason, T.J. Am. J. Epidemiol. (1988) [Pubmed]
  16. Energy, macronutrients and laryngeal cancer risk. Bosetti, C., La Vecchia, C., Talamini, R., Negri, E., Levi, F., Fryzek, J., McLaughlin, J.K., Garavello, W., Franceschi, S. Ann. Oncol. (2003) [Pubmed]
  17. Infrequency of BRCA2 alterations in head and neck squamous cell carcinoma. Kirkpatrick, H., Waber, P., Hoa-Thai, T., Barnes, R., Osborne-Lawrence, S., Truelson, J., Nisen, P., Bowcock, A. Oncogene (1997) [Pubmed]
  18. p53 mutations in larynx cancer. Zhang, L.F., Hemminki, K., Szyfter, K., Szyfter, W., Söderkvist, P. Carcinogenesis (1994) [Pubmed]
  19. Expression of ras oncogene p21 protein in normal and neoplastic laryngeal tissues: correlation with histopathological features and epidermal growth factor receptors. Scambia, G., Catozzi, L., Benedetti Panici, P., Ferrandina, G., Almadori, G., Paludetti, G., Cadoni, G., Distefano, M., Piffanelli, A., Mancuso, S. Br. J. Cancer (1994) [Pubmed]
  20. Androgens increase insulin receptor mRNA levels, insulin binding, and insulin responsiveness in HEp-2 larynx carcinoma cells. Sesti, G., Marini, M.A., Briata, P., Tullio, A.N., Montemurro, A., Borboni, P., De Pirro, R., Gherzi, R., Lauro, R. Mol. Cell. Endocrinol. (1992) [Pubmed]
  21. Expression of extracellular matrix metalloprotease inducer in laryngeal squamous cell carcinoma. Rosenthal, E.L., Shreenivas, S., Peters, G.E., Grizzle, W.E., Desmond, R., Gladson, C.L. Laryngoscope (2003) [Pubmed]
  22. Expression of cathepsin D in malignant and in the corresponding non-malignant node-negative laryngeal samples: correlation with receptors for androgen, glucocorticoid, oestrogen and progesterone. Marsigliante, S., Resta, L., Leo, G., Mazzotta, D., d'Amore, R., Biscozzo, L., Storelli, C. Cancer Lett. (1993) [Pubmed]
  23. Effect of cigarette smoking and alcohol consumption in the aetiology of cancer of the oral cavity, pharynx and larynx. Choi, S.Y., Kahyo, H. International journal of epidemiology. (1991) [Pubmed]
  24. Association of vascular endothelial growth factor and mast cells with angiogenesis in laryngeal squamous cell carcinoma. Sawatsubashi, M., Yamada, T., Fukushima, N., Mizokami, H., Tokunaga, O., Shin, T. Virchows Arch. (2000) [Pubmed]
  25. Laryngeal cancer risk in Caucasians is associated with alcohol and tobacco consumption but not modified by genetic polymorphisms in class I alcohol dehydrogenases ADH1B and ADH1C, and glutathione-S-transferases GSTM1 and GSTT1. Risch, A., Ramroth, H., Raedts, V., Rajaee-Behbahani, N., Schmezer, P., Bartsch, H., Becher, H., Dietz, A. Pharmacogenetics (2003) [Pubmed]
  26. Larynx cancer risk in relation to glutathione S-transferase M1 and T1 genotypes and tobacco smoking. Jourenkova, N., Reinikainen, M., Bouchardy, C., Dayer, P., Benhamou, S., Hirvonen, A. Cancer Epidemiol. Biomarkers Prev. (1998) [Pubmed]
  27. Impairment of MLH1 and CDKN2A in oncogenesis of laryngeal cancer. Sasiadek, M.M., Stembalska-Kozlowska, A., Smigiel, R., Ramsey, D., Kayademir, T., Blin, N. Br. J. Cancer (2004) [Pubmed]
  28. Tissue microarray analysis of EGFR and HER2 oncogene copy number alterations in squamous cell carcinoma of the larynx. Koynova, D.K., Tsenova, V.S., Jankova, R.S., Gurov, P.B., Toncheva, D.I. J. Cancer Res. Clin. Oncol. (2005) [Pubmed]
  29. Inhibition of human telomerase reverse transcriptase in hep-2 cells using short hairpin RNA expression vectors. Chen, S.M., Tao, Z.Z., Hua, Q.Q., Liu, D., Chi, H.M., Cai, Q. Arch. Otolaryngol. Head Neck Surg. (2006) [Pubmed]
  30. Primary and recurrent early stage laryngeal cancer: preliminary results of 2-[fluorine 18]fluoro-2-deoxy-D-glucose PET imaging. Lowe, V.J., Kim, H., Boyd, J.H., Eisenbeis, J.F., Dunphy, F.R., Fletcher, J.W. Radiology. (1999) [Pubmed]
  31. P53 overexpression is associated with bulky tumor and poor local control in T1 glottic cancer. Narayana, A., Vaughan, A.T., Kathuria, S., Fisher, S.G., Walter, S.A., Reddy, S.P. Int. J. Radiat. Oncol. Biol. Phys. (2000) [Pubmed]
  32. Voice and swallowing outcomes of an organ-preservation trial for advanced laryngeal cancer. Fung, K., Lyden, T.H., Lee, J., Urba, S.G., Worden, F., Eisbruch, A., Tsien, C., Bradford, C.R., Chepeha, D.B., Hogikyan, N.D., Prince, M.E., Teknos, T.N., Wolf, G.T. Int. J. Radiat. Oncol. Biol. Phys. (2005) [Pubmed]
  33. Cyclin A and Ki-67 expression as predictors for locoregional recurrence and outcome in laryngeal cancer patients treated with surgery and postoperative radiotherapy. Saarilahti, K., Kajanti, M., Kouri, M., Aaltonen, L.M., Franssila, K., Joensuu, H. Int. J. Radiat. Oncol. Biol. Phys. (2003) [Pubmed]
  34. Chromosomes 7,17 polysomies and overexpression of epidermal growth factor receptor and p53 protein in epithelial hyperplastic laryngeal lesions. Gale, N., Kambic, V., Poljak, M., Cör, A., Velkavrh, D., Mlacak, B. Oncology (2000) [Pubmed]
 
WikiGenes - Universities