The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

phoA  -  alkaline phosphatase

Pseudomonas aeruginosa PAO1

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of phoA


High impact information on phoA

  • To verify the prediction, we analyzed the membrane topology of MexB using the alkaline phosphatase gene fusion method [6].
  • The P. aeruginosa type II general secretory pathway (GSP) is used to export the largest number of proteins from this organism, including lipase, phospholipase C, alkaline phosphatase, exotoxin A, elastase and LasA [7].
  • By sequential treatment with nucleotide pyrophosphatase and alkaline phosphatase, the flavin in each enzyme was shown to be in the dinucleotide form [8].
  • No correlation occurred with peak serum level of antibiotic, creatinine, bilirubin, or alkaline phosphatase [9].
  • Similarly, extraction of actively secreting cells with 0.2 M MgCl2 at pH 8.4 solubilized large quantities of the periplasmic enzyme alkaline phosphatase but insignificant amounts of phospholipase C. Bacteria continued to secrete enzyme for nearly 45 min after the addition of inorganic phosphate or rifampin [10].

Chemical compound and disease context of phoA


Biological context of phoA


Anatomical context of phoA

  • By Western blotting and phoA fusion analyses, the MucB antagonist of sigma22 was found to localize to the periplasm of the cell [20].
  • Diazo-7-amino-1,3-napthalenedisulfonic acid, a compound which does not penetrate the cytoplasmic membrane, completely inactivated rhodanese and alkaline phosphatase, a periplasmic enzyme, whereas lactic dehydrogenase retained its full activity [21].
  • Ribonuclease and alkaline phosphatase are classed as enzymes which are readily extracted by osmotic shock and spheroplast formation whereas cyclic-2',3'-phosphodiesterase and 5'-nucleotidase are classed as enzymes which are not readily extracted by these procedures [22].

Associations of phoA with chemical compounds


Other interactions of phoA

  • Using a mexA-phoA fusion, expression of the efflux genes was assessed as a function of growth in a variety of strains [27].
  • We show that PilD, encoding a putative pilin-specific leader peptidase, also controls export of alkaline phosphatase, phospholipase C, elastase, and exotoxin A. pilD mutants accumulate these proteins in the periplasmic space, while secretion of periplasmic and outer membrane proteins appears to be normal [28].

Analytical, diagnostic and therapeutic context of phoA

  • Measurements with an oxygen microelectrode indicated that oxygen was depleted locally within the biofilm and that the oxygen-replete zone was of a dimension similar to that of the biologically active zone, as indicated by alkaline phosphatase induction [29].
  • Sequence analysis and complementation studies showed that the P. aeruginosa phoU gene was involved both in the regulation of AP expression and in the induction of P(i) taxis [30].


  1. High-dose chemotherapy with autologous bone marrow transplantation in 50 advanced resistant Hodgkin's disease patients: an Italian study group report. Carella, A.M., Congiu, A.M., Gaozza, E., Mazza, P., Ricci, P., Visani, G., Meloni, G., Cimino, G., Mangoni, L., Coser, P. J. Clin. Oncol. (1988) [Pubmed]
  2. Isolation and characterization of monoclonal antibodies against alkaline phosphatase of Pseudomonas aeruginosa. Husson, M.O., Mielcarek, C., Gavini, F., Caron, C., Izard, D., Leclerc, H. J. Clin. Microbiol. (1989) [Pubmed]
  3. Liver enzyme abnormalities in gram-negative bacteremia of premature infants. Shamir, R., Maayan-Metzger, A., Bujanover, Y., Ashkenazi, S., Dinari, G., Sirota, L. Pediatr. Infect. Dis. J. (2000) [Pubmed]
  4. Pseudomonas aeruginosa-induced lung injury: role of oxidative stress. Suntres, Z.E., Omri, A., Shek, P.N. Microb. Pathog. (2002) [Pubmed]
  5. Intraruminal administration of milk in the calf as a model for ruminal drinking: morphological and enzymatical changes in the jejunal mucosa. Van Weeren-Keverling Buisman, A., Mouwen, J.M., Wensing, T., Breukink, H.J. Vet. Res. Commun. (1990) [Pubmed]
  6. Membrane topology of the xenobiotic-exporting subunit, MexB, of the MexA,B-OprM extrusion pump in Pseudomonas aeruginosa. Guan, L., Ehrmann, M., Yoneyama, H., Nakae, T. J. Biol. Chem. (1999) [Pubmed]
  7. Identification of an additional member of the secretin superfamily of proteins in Pseudomonas aeruginosa that is able to function in type II protein secretion. Martínez, A., Ostrovsky, P., Nunn, D.N. Mol. Microbiol. (1998) [Pubmed]
  8. Identification of the covalently bound flavins of D-gluconate dehydrogenases from Pseudomonas aeruginosa and Pseudomonas fluorescens and of 2-keto-D-gluconate dehydrogenase from Gluconobacter melanogenus. McIntire, W., Singer, T.P., Ameyama, M., Adachi, O., Matsushita, K., Shinagawa, E. Biochem. J. (1985) [Pubmed]
  9. Biliary concentrations of piperacillin in patients undergoing cholecystectomy. Giron, J.A., Meyers, B.R., Hirschman, S.Z. Antimicrob. Agents Chemother. (1981) [Pubmed]
  10. Secretion of phospholipase C by Pseudomonas aeruginosa. Stinson, M.W., Hayden, C. Infect. Immun. (1979) [Pubmed]
  11. Localization of alg, opr, phn, pho, 4.5S RNA, 6S RNA, tox, trp, and xcp genes, rrn operons, and the chromosomal origin on the physical genome map of Pseudomonas aeruginosa PAO. Römling, U., Duchéne, M., Essar, D.W., Galloway, D., Guidi-Rontani, C., Hill, D., Lazdunski, A., Miller, R.V., Schleifer, K.H., Smith, D.W. J. Bacteriol. (1992) [Pubmed]
  12. Glutaraldehyde reactions with alkaline phosphatase of Pseudomonas aeruginosa. Day, D.F., Ingram, J.M. Can. J. Microbiol. (1981) [Pubmed]
  13. Identification of the Pseudomonas aeruginosa acid phosphatase as a phosphorylcholine phosphatase activity. Garrido, M.N., Lisa, T.A., Albelo, S., Lucchesi, G.I., Domenech, C.E. Mol. Cell. Biochem. (1990) [Pubmed]
  14. Choline and betaine as inducer agents of Pseudomonas aeruginosa phospholipase C activity in high phosphate medium. Lucchesi, G.I., Lisa, T.A., Domenech, C.E. FEMS Microbiol. Lett. (1989) [Pubmed]
  15. Topological analysis and role of the transmembrane domain in polar targeting of PilS, a Pseudomonas aeruginosa sensor kinase. Ethier, J., Boyd, J.M. Mol. Microbiol. (2000) [Pubmed]
  16. Topological analysis of an RND family transporter, MexD of Pseudomonas aeruginosa. Gotoh, N., Kusumi, T., Tsujimoto, H., Wada, T., Nishino, T. FEBS Lett. (1999) [Pubmed]
  17. Cell division in Pseudomonas aeruginosa: participation of alkaline phosphatase. Bhatti, A.R., DeVoe, I.W., Ingram, J.M. J. Bacteriol. (1976) [Pubmed]
  18. Phospholipase C regulatory mutation of Pseudomonas aeruginosa that results in constitutive synthesis of several phosphate-repressible proteins. Gray, G.L., Berka, R.M., Vasil, M.L. J. Bacteriol. (1982) [Pubmed]
  19. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. Kadurugamuwa, J.L., Beveridge, T.J. J. Bacteriol. (1995) [Pubmed]
  20. Posttranslational control of the algT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). Mathee, K., McPherson, C.J., Ohman, D.E. J. Bacteriol. (1997) [Pubmed]
  21. Release of rhodanese from Pseudomonas aeruginosa by cold shock and its localization within the cell. Ryan, R.W., Gourlie, M.P., Tilton, R.C. Can. J. Microbiol. (1979) [Pubmed]
  22. The release and characterization of some periplasm-located enzymes of Pseudomona aeruginosa. Bhatti, A.R., DeVoe, I.W., Ingram, J.M. Can. J. Microbiol. (1976) [Pubmed]
  23. Tyrosine phosphate in a- and b-type flagellins of Pseudomonas aeruginosa. Kelly-Wintenberg, K., South, S.L., Montie, T.C. J. Bacteriol. (1993) [Pubmed]
  24. Outer membrane protein P of Pseudomonas aeruginosa: regulation by phosphate deficiency and formation of small anion-specific channels in lipid bilayer membranes. Hancock, R.E., Poole, K., Benz, R. J. Bacteriol. (1982) [Pubmed]
  25. Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Huang, C.T., Xu, K.D., McFeters, G.A., Stewart, P.S. Appl. Environ. Microbiol. (1998) [Pubmed]
  26. Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. Kadurugamuwa, J.L., Beveridge, T.J. J. Antimicrob. Chemother. (1997) [Pubmed]
  27. The MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa is growth-phase regulated. Evans, K., Poole, K. FEMS Microbiol. Lett. (1999) [Pubmed]
  28. Multiple roles of the pilus biogenesis protein pilD: involvement of pilD in excretion of enzymes from Pseudomonas aeruginosa. Strom, M.S., Nunn, D., Lory, S. J. Bacteriol. (1991) [Pubmed]
  29. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Xu, K.D., Stewart, P.S., Xia, F., Huang, C.T., McFeters, G.A. Appl. Environ. Microbiol. (1998) [Pubmed]
  30. Cloning and characterization of a Pseudomonas aeruginosa gene involved in the negative regulation of phosphate taxis. Kato, J., Sakai, Y., Nikata, T., Ohtake, H. J. Bacteriol. (1994) [Pubmed]
WikiGenes - Universities