The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Francisella

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Francisella

  • We have cloned and sequenced genes for triosephosphate isomerase (TPI) from the gamma-proteobacterium Francisella tularensis, the green non-sulfur bacterium Chloroflexus aurantiacus, and the alpha-proteobacterium Rhizobium etli and used these in phylogenetic analysis with TPI sequences from other members of the Bacteria, Archaea, and Eukarya [1].
  • MsbA transporter-dependent lipid A 1-dephosphorylation on the periplasmic surface of the inner membrane: topography of francisella novicida LpxE expressed in Escherichia coli [2].
  • Development of Francisella tularensis antigen responses measured as T-lymphocyte proliferation and cytokine production (tumor necrosis factor alpha, gamma interferon, and interleukin-2 and -4) during human tularemia [3].
  • Following this facile modification of patterning and assay procedures, the following nine targets could be detected in a single 3 x 3 array: Staphylococcal enterotoxin B, ricin, cholera toxin, Bacillus anthracis Sterne, Bacillus globigii, Francisella tularensis LVS, Yersiniapestis F1 antigen, MS2 coliphage, and Salmonella typhimurium [4].
  • Peritoneal cells from Mycobacterium bovis BCG-infected C3H/HeN mice produced nitrite (NO2-, an oxidative end product of nitric oxide [NO] synthesis) and inhibited the growth of Francisella tularensis, a facultative intracellular bacterium [5].
 

High impact information on Francisella

 

Chemical compound and disease context of Francisella

 

Biological context of Francisella

 

Anatomical context of Francisella

 

Gene context of Francisella

  • In vivo clearance of an intracellular bacterium, Francisella tularensis LVS, is dependent on the p40 subunit of interleukin-12 (IL-12) but not on IL-12 p70 [21].
  • The groE operon of Francisella tularensis LVS, encoding the heat shock proteins chaperone-10 (Cpn10) and Cpn60, was sequenced and characterized, and the T-cell response of LVS-vaccinated individuals to the two proteins and the third major chaperone, Ft-DnaK, was assayed [15].
  • We have cloned the Francisella tularensis (Ft) grpE-dnaK-dnaJ heat-shock genes which are organized in that order [22].
  • Toll-like receptor 4 (TLR4) does not confer a resistance advantage on mice against low-dose aerosol infection with virulent type A Francisella tularensis [23].
  • pOM1 is a recombinant 4442-bp plasmid that includes the replicon of the Francisella novicida-like strain F6168 cryptic plasmid pFNL10 and the tetracycline resistance gene (tetC) of plasmid pBR328. pOM1 can stably replicate and is maintained in Francisella tularensis biovars tularensis, palaearctica, and palaearctica var. japonica [24].
 

Analytical, diagnostic and therapeutic context of Francisella

References

  1. Evidence that eukaryotic triosephosphate isomerase is of alpha-proteobacterial origin. Keeling, P.J., Doolittle, W.F. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  2. MsbA transporter-dependent lipid A 1-dephosphorylation on the periplasmic surface of the inner membrane: topography of francisella novicida LpxE expressed in Escherichia coli. Wang, X., Karbarz, M.J., McGrath, S.C., Cotter, R.J., Raetz, C.R. J. Biol. Chem. (2004) [Pubmed]
  3. Development of Francisella tularensis antigen responses measured as T-lymphocyte proliferation and cytokine production (tumor necrosis factor alpha, gamma interferon, and interleukin-2 and -4) during human tularemia. Surcel, H.M., Syrjälä, H., Karttunen, R., Tapaninaho, S., Herva, E. Infect. Immun. (1991) [Pubmed]
  4. Nine-analyte detection using an array-based biosensor. Taitt, C.R., Anderson, G.P., Lingerfelt, B.M., Feldstein, M.J., Ligler, F.S. Anal. Chem. (2002) [Pubmed]
  5. Neutralization of gamma interferon and tumor necrosis factor alpha blocks in vivo synthesis of nitrogen oxides from L-arginine and protection against Francisella tularensis infection in Mycobacterium bovis BCG-treated mice. Green, S.J., Nacy, C.A., Schreiber, R.D., Granger, D.L., Crawford, R.M., Meltzer, M.S., Fortier, A.H. Infect. Immun. (1993) [Pubmed]
  6. Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. Mariathasan, S., Weiss, D.S., Dixit, V.M., Monack, D.M. J. Exp. Med. (2005) [Pubmed]
  7. Multiple T cell subsets control Francisella tularensis LVS intracellular growth without stimulation through macrophage interferon gamma receptors. Cowley, S.C., Elkins, K.L. J. Exp. Med. (2003) [Pubmed]
  8. Expression cloning and periplasmic orientation of the Francisella novicida lipid A 4'-phosphatase LpxF. Wang, X., McGrath, S.C., Cotter, R.J., Raetz, C.R. J. Biol. Chem. (2006) [Pubmed]
  9. Growth inhibition of Francisella tularensis live vaccine strain by IFN-gamma-activated macrophages is mediated by reactive nitrogen intermediates derived from L-arginine metabolism. Anthony, L.S., Morrissey, P.J., Nano, F.E. J. Immunol. (1992) [Pubmed]
  10. Phase variation in Francisella tularensis affecting intracellular growth, lipopolysaccharide antigenicity and nitric oxide production. Cowley, S.C., Myltseva, S.V., Nano, F.E. Mol. Microbiol. (1996) [Pubmed]
  11. Liposome-encapsulated ciprofloxacin is effective in the protection and treatment of BALB/c mice against Francisella tularensis. Di Ninno, V.L., Cherwanogrodzky, J.W., Wong, J.P. J. Infect. Dis. (1993) [Pubmed]
  12. Aerosol delivery of liposome-encapsulated ciprofloxacin: aerosol characterization and efficacy against Francisella tularensis infection in mice. Conley, J., Yang, H., Wilson, T., Blasetti, K., Di Ninno, V., Schnell, G., Wong, J.P. Antimicrob. Agents Chemother. (1997) [Pubmed]
  13. Intranasal interleukin-12 treatment promotes antimicrobial clearance and survival in pulmonary Francisella tularensis subsp. novicida infection. Pammit, M.A., Budhavarapu, V.N., Raulie, E.K., Klose, K.E., Teale, J.M., Arulanandam, B.P. Antimicrob. Agents Chemother. (2004) [Pubmed]
  14. Francisella tularensis travels a novel, twisted road within macrophages. Santic, M., Molmeret, M., Klose, K.E., Abu Kwaik, Y. Trends Microbiol. (2006) [Pubmed]
  15. Characterization of the nucleotide sequence of the groE operon encoding heat shock proteins chaperone-60 and -10 of Francisella tularensis and determination of the T-cell response to the proteins in individuals vaccinated with F. tularensis. Ericsson, M., Golovliov, I., Sandström, G., Tärnvik, A., Sjöstedt, A. Infect. Immun. (1997) [Pubmed]
  16. Isolation of Francisella tularensis by centrifugation of shell vial cell culture from an inoculation eschar. Fournier, P.E., Bernabeu, L., Schubert, B., Mutillod, M., Roux, V., Raoult, D. J. Clin. Microbiol. (1998) [Pubmed]
  17. Interleukin 2 production in whole blood culture: a rapid test of immunity to Francisella tularensis. Karttunen, R., Ilonen, J., Herva, E. J. Clin. Microbiol. (1985) [Pubmed]
  18. Correlation between the virulence of Francisella tularensis in experimental mice and its acriflavine reaction. Sato, T., Fujita, H., Ohara, Y., Homma, M. Curr. Microbiol. (1992) [Pubmed]
  19. A wild and an attenuated strain of Francisella tularensis differ in susceptibility to hypochlorous acid: a possible explanation of their different handling by polymorphonuclear leukocytes. Löfgren, S., Tärnvik, A., Thore, M., Carlsson, J. Infect. Immun. (1984) [Pubmed]
  20. Francisella tularensis resistance to bactericidal action of normal human serum. Sorokin, V.M., Pavlovich, N.V., Prozorova, L.A. FEMS Immunol. Med. Microbiol. (1996) [Pubmed]
  21. In vivo clearance of an intracellular bacterium, Francisella tularensis LVS, is dependent on the p40 subunit of interleukin-12 (IL-12) but not on IL-12 p70. Elkins, K.L., Cooper, A., Colombini, S.M., Cowley, S.C., Kieffer, T.L. Infect. Immun. (2002) [Pubmed]
  22. Analysis of the DnaK molecular chaperone system of Francisella tularensis. Zuber, M., Hoover, T.A., Dertzbaugh, M.T., Court, D.L. Gene (1995) [Pubmed]
  23. Toll-like receptor 4 (TLR4) does not confer a resistance advantage on mice against low-dose aerosol infection with virulent type A Francisella tularensis. Chen, W., KuoLee, R., Shen, H., Bùsa, M., Conlan, J.W. Microb. Pathog. (2004) [Pubmed]
  24. Nucleotide sequence, structural organization, and functional characterization of the small recombinant plasmid pOM1 that is specific for Francisella tularensis. Pomerantsev, A.P., Obuchi, M., Ohara, Y. Plasmid (2001) [Pubmed]
  25. Enzyme-linked immunosorbent assay (ELISA) with bacterial sonicate antigen for IgM, IgA, and IgG antibodies to Francisella tularensis: comparison with bacterial agglutination test and ELISA with lipopolysaccharide antigen. Viljanen, M.K., Nurmi, T., Salminen, A. J. Infect. Dis. (1983) [Pubmed]
  26. Molecular cloning of the recA gene and construction of a recA strain of Francisella novicida. Berg, J.M., Mdluli, K.E., Nano, F.E. Infect. Immun. (1992) [Pubmed]
  27. Detection of diverse new Francisella-like bacteria in environmental samples. Barns, S.M., Grow, C.C., Okinaka, R.T., Keim, P., Kuske, C.R. Appl. Environ. Microbiol. (2005) [Pubmed]
  28. Evaluation of a safranin-O-stained antigen microagglutination test for francisella tularensis antibodies. Brown, S.L., McKinney, F.T., Klein, G.C., Jones, W.L. J. Clin. Microbiol. (1980) [Pubmed]
 
WikiGenes - Universities