The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Pln  -  phospholamban

Mus musculus

Synonyms: Cardiac phospholamban, PLB
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Pln


High impact information on Pln


Chemical compound and disease context of Pln


Biological context of Pln


Anatomical context of Pln

  • Expression of PLB is reportedly limited to cardiac, slow-twitch skeletal and smooth muscle in which PLB is an important regulator of [Ca2+]i and contractility in these muscles [14].
  • These findings were corroborated by in situ hybridization studies of cardiopulmonary sections from both murine strains, and phospholamban transcripts were also observed in pulmonary myocardia of both strains [11].
  • Phospholamban (PLB) is a 24- to 27-kDa phosphoprotein that modulates activity of the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) [14].
  • The presence of PLB in endothelial cells opens new fields for investigation of Ca2+ regulatory pathways in nonmuscle cells and for modulation of endothelial-vascular interactions [14].
  • This effect was not due to actions of nitric oxide on the smooth muscle, because sodium nitroprusside-mediated relaxation in either denuded or endothelium-intact aortas was unaffected by PLB ablation [14].

Associations of Pln with chemical compounds

  • Endothelium-dependent relaxation to acetylcholine was attenuated in aorta of PLB-deficient (PLB-KO) mice compared with wild-type (WT) controls [14].
  • These measurements were repeated in ventricular myocytes from novel mice with cardiac CaMKII inhibition lacking phospholamban (PLN), a known CaMKII substrate and a negative regulator of Ca(2+)(i) uptake into the SR Ca(2+) store [15].
  • Baseline levels of these parameters in the phospholamban-deficient hearts were equal to those observed in hearts of wild-type littermates maximally stimulated with the beta-agonist isoproterenol [16].
  • We investigated this by measuring the effects of carbachol (CCh) on force and [Ca2+]i in bladder from mice in which the PLB gene was ablated (PLB-KO mice) [17].
  • The CaMKII inhibitor KN-93 inhibited caffeine-induced relaxation and PLB Thr17 phosphorylation [18].

Physical interactions of Pln


Enzymatic interactions of Pln


Regulatory relationships of Pln


Other interactions of Pln


Analytical, diagnostic and therapeutic context of Pln


  1. Phospholamban is required for CaMKII-dependent recovery of Ca transients and SR Ca reuptake during acidosis in cardiac myocytes. DeSantiago, J., Maier, L.S., Bers, D.M. J. Mol. Cell. Cardiol. (2004) [Pubmed]
  2. The effect of isoproterenol on phospholamban-deficient mouse hearts with altered thyroid conditions. Brittsan, A.G., Kiss, E., Edes, I., Grupp, I.L., Grupp, G., Kranias, E.G. J. Mol. Cell. Cardiol. (1999) [Pubmed]
  3. Rescue of cardiomyocyte dysfunction by phospholamban ablation does not prevent ventricular failure in genetic hypertrophy. Song, Q., Schmidt, A.G., Hahn, H.S., Carr, A.N., Frank, B., Pater, L., Gerst, M., Young, K., Hoit, B.D., McConnell, B.K., Haghighi, K., Seidman, C.E., Seidman, J.G., Dorn, G.W., Kranias, E.G. J. Clin. Invest. (2003) [Pubmed]
  4. Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Minamisawa, S., Hoshijima, M., Chu, G., Ward, C.A., Frank, K., Gu, Y., Martone, M.E., Wang, Y., Ross, J., Kranias, E.G., Giles, W.R., Chien, K.R. Cell (1999) [Pubmed]
  5. Phospholamban: a crucial regulator of cardiac contractility. MacLennan, D.H., Kranias, E.G. Nat. Rev. Mol. Cell Biol. (2003) [Pubmed]
  6. Alterations in cardiac adrenergic signaling and calcium cycling differentially affect the progression of cardiomyopathy. Freeman, K., Lerman, I., Kranias, E.G., Bohlmeyer, T., Bristow, M.R., Lefkowitz, R.J., Iaccarino, G., Koch, W.J., Leinwand, L.A. J. Clin. Invest. (2001) [Pubmed]
  7. Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. Jones, L.R., Suzuki, Y.J., Wang, W., Kobayashi, Y.M., Ramesh, V., Franzini-Armstrong, C., Cleemann, L., Morad, M. J. Clin. Invest. (1998) [Pubmed]
  8. Increased particulate partitioning of PKC epsilon reverses susceptibility of phospholamban knockout hearts to ischemic injury. Gregory, K.N., Hahn, H., Haghighi, K., Marreez, Y., Odley, A., Dorn, G.W., Kranias, E.G. J. Mol. Cell. Cardiol. (2004) [Pubmed]
  9. Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. Savorè, C., Zhang, C., Muir, C., Liu, R., Wyrwa, J., Shu, J., Zhau, H.E., Chung, L.W., Carson, D.D., Farach-Carson, M.C. Clin. Exp. Metastasis (2005) [Pubmed]
  10. Stimulation of bovine cardiac sarcoplasmic reticulum Ca2+ pump and blocking of phospholamban phosphorylation and dephosphorylation by a phospholamban monoclonal antibody. Suzuki, T., Wang, J.H. J. Biol. Chem. (1986) [Pubmed]
  11. Differential phospholamban gene expression in murine cardiac compartments. Molecular and physiological analyses. Koss, K.L., Ponniah, S., Jones, W.K., Grupp, I.L., Kranias, E.G. Circ. Res. (1995) [Pubmed]
  12. Ectopic expression of phospholamban in fast-twitch skeletal muscle alters sarcoplasmic reticulum Ca2+ transport and muscle relaxation. Slack, J.P., Grupp, I.L., Ferguson, D.G., Rosenthal, N., Kranias, E.G. J. Biol. Chem. (1997) [Pubmed]
  13. The sarcoplasmic reticulum and smooth muscle function: evidence from transgenic mice. Paul, R.J., Shull, G.E., Kranias, E.G. Novartis Found. Symp. (2002) [Pubmed]
  14. Phospholamban is present in endothelial cells and modulates endothelium-dependent relaxation. Evidence from phospholamban gene-ablated mice. Sutliff, R.L., Hoying, J.B., Kadambi, V.J., Kranias, E.G., Paul, R.J. Circ. Res. (1999) [Pubmed]
  15. Suppression of dynamic Ca(2+) transient responses to pacing in ventricular myocytes from mice with genetic calmodulin kinase II inhibition. Wu, Y., Shintani, A., Grueter, C., Zhang, R., Hou, Y., Yang, J., Kranias, E.G., Colbran, R.J., Anderson, M.E. J. Mol. Cell. Cardiol. (2006) [Pubmed]
  16. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Luo, W., Grupp, I.L., Harrer, J., Ponniah, S., Grupp, G., Duffy, J.J., Doetschman, T., Kranias, E.G. Circ. Res. (1994) [Pubmed]
  17. Phospholamban regulation of bladder contractility: evidence from gene-altered mouse models. Nobe, K., Sutliff, R.L., Kranias, E.G., Paul, R.J. J. Physiol. (Lond.) (2001) [Pubmed]
  18. CaM kinase II and phospholamban contribute to caffeine-induced relaxation of murine gastric fundus smooth muscle. Kim, M., Cho, S.Y., Han, I.S., Koh, S.D., Perrino, B.A. Am. J. Physiol., Cell Physiol. (2005) [Pubmed]
  19. Cardiac-specific overexpression of sarcolipin in phospholamban null mice impairs myocyte function that is restored by phosphorylation. Gramolini, A.O., Trivieri, M.G., Oudit, G.Y., Kislinger, T., Li, W., Patel, M.M., Emili, A., Kranias, E.G., Backx, P.H., Maclennan, D.H. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  20. The relative phospholamban and SERCA2 ratio: a critical determinant of myocardial contractility. Koss, K.L., Grupp, I.L., Kranias, E.G. Basic Res. Cardiol. (1997) [Pubmed]
  21. Rapid purification of phospholamban by monoclonal antibody immunoaffinity chromatography. Suzuki, T., Lui, P., Wang, J.H. Biochem. Cell Biol. (1987) [Pubmed]
  22. Residues 2-25 of phospholamban are insufficient to inhibit Ca2+ transport ATPase of cardiac sarcoplasmic reticulum. Jones, L.R., Field, L.J. J. Biol. Chem. (1993) [Pubmed]
  23. The enhanced contractility in phospholamban deficient mouse hearts is not associated with alterations in (Ca2+)-sensitivity or myosin ATPase-activity of the contractile proteins. Schwinger, R.H., Brixius, K., Savvidou-Zaroti, P., Bölck, B., Zobel, C., Frank, K., Kranias, E.G., Hoischen, S., Erdmann, E. Basic Res. Cardiol. (2000) [Pubmed]
  24. Pneumolysin, a protein toxin of Streptococcus pneumoniae, induces nitric oxide production from macrophages. Braun, J.S., Novak, R., Gao, G., Murray, P.J., Shenep, J.L. Infect. Immun. (1999) [Pubmed]
  25. Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. Kadambi, V.J., Ponniah, S., Harrer, J.M., Hoit, B.D., Dorn, G.W., Walsh, R.A., Kranias, E.G. J. Clin. Invest. (1996) [Pubmed]
  26. Mouse phospholamban gene expression during development in vivo and in vitro. Ganim, J.R., Luo, W., Ponniah, S., Grupp, I., Kim, H.W., Ferguson, D.G., Kadambi, V., Neumann, J.C., Doetschman, T., Kranias, E.G. Circ. Res. (1992) [Pubmed]
WikiGenes - Universities