The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Influenza in Birds

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Influenza in Birds


High impact information on Influenza in Birds

  • We have recently found that the enzyme activating the haemagglutinin of fowl plague virus (FPV), an avian influenza virus, is furin [6].
  • In L-929 cells abortively infected with fowl plague virus, matrix (M) protein synthesis is specifically inhibited, whereas the envelope glycoproteins, hemagglutinin and neuraminidase, are synthesized and incorporated into the plasma membrane [7].
  • Coexpression of furin with the fowl plague virus hemagglutinin in the presence of brefeldin A and monensin reveals that furin has to enter the Golgi region to gain substrate cleaving activity [8].
  • The proteases responsible for cleavage of the hemagglutinin of fowl plague virus, a prototype of these glycoproteins, has now been isolated from Madin-Darby bovine kidney cells [1].
  • A cDNA sequence of the influenza (fowl plague) virus haemagglutinin gene has been inserted into the BamHI site of the pAc373 polyhedrin vector [9].

Chemical compound and disease context of Influenza in Birds

  • At calcium-specific ionophore A23187 concentrations of approximately 0.25 microM [which still allow assembly and release of fowl plague virus (FPV) particles] post-translational proteolytic cleavage of the viral hemagglutinin precursor HA into the fragments HA1 and HA2 is inhibited [10].
  • The infectivity of fowl plague virus is increased by 80-fold when 4% dimethyl sulfoxide is added to culture medium immediately after infection [11].
  • The genomic RNA of the avian influenza A virus, fowl plague, was fractionated into eight species by electrophoresis in polyacrylamide-agarose gels containing 6 M urea [12].
  • In addition, the probable sites of initiation of translation of fowl plague virus mRNA are indicated along with the corresponding NH2-terminal amino acid sequences of the virus polypeptides [13].
  • To analyze the compatibility of avian influenza A virus hemagglutinins (HAs) and human influenza A virus matrix (M) proteins M1 and M2, we doubly infected Madin-Darby canine kidney cells with amantadine (1-aminoadamantane hydrochloride)-resistant human viruses and amantadine-sensitive avian strains [14].
  • There was no direct correlation between the IFN-beta induction and replication of avian influenza viruses in human A549 cells [15].

Biological context of Influenza in Birds

  • The virulence of avian influenza viruses correlates with the sensitivity of their hemagglutinin (HA) to cellular proteases [16].
  • We have previously shown that retroviral vector particles derived from Moloney murine leukemia virus (Mo-MuLV) can efficiently incorporate influenza hemagglutinin (HA) glycoproteins from fowl plague virus (FPV), thus conferring a broad tropism to the vectors [17].
  • In this study we used nucleotide sequence analysis to evaluate the genetic stability of the attenuating M and NP genes of the avian influenza A/Mallard/NY/6750/78 attenuated donor virus during the in vitro generation and subsequent in vivo replication of avian-human (AH) influenza A reassortant vaccine viruses in monkeys and humans [18].
  • However, unlike previous poultry outbreaks of highly pathogenic avian influenza due to H5 that were controlled by depopulation with or without vaccination, the presently circulating A/H5N1 genotype Z virus has since been spreading from Southern China to other parts of the world [19].
  • A multiplex real-time reverse transcriptase-polymerase chain reaction (RRT-PCR) assay for the simultaneous detection of the H5 and H7 avian influenza hemagglutinin (HA) subtypes was developed with hydrolysis type probes labeled with the FAM (H5 probe) and ROX (H7 probe) reporter dyes [20].

Anatomical context of Influenza in Birds


Gene context of Influenza in Birds

  • p38 mitogen-activated protein kinase-dependent hyperinduction of tumor necrosis factor alpha expression in response to avian influenza virus H5N1 [26].
  • These data suggest that PC6, as well as furin, can activate virulent avian influenza viruses in vivo, implying the presence of multiple HA cleavage enzymes in animals [27].
  • Mice carrying the gene Mx were resistant to the lethal action of a hepatotropic line of avian influenza A virus [28].
  • Recent outbreaks of SARS, avian influenza, and others highlight emerging zoonotic diseases as one of the key threats to global health [29].
  • Using M-TUR, a macrophage-adapted avian influenza A virus (Hav1, Nav3), antiviral resistance of peritoneal macrophages obtained from specifically or nonspecifically immunized mice towards in vitro infection was assessed [30].

Analytical, diagnostic and therapeutic context of Influenza in Birds


  1. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. Stieneke-Gröber, A., Vey, M., Angliker, H., Shaw, E., Thomas, G., Roberts, C., Klenk, H.D., Garten, W. EMBO J. (1992) [Pubmed]
  2. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. Subbarao, E.K., London, W., Murphy, B.R. J. Virol. (1993) [Pubmed]
  3. Synthesis of biologically active influenza virus hemagglutinin in insect larvae. Kuroda, K., Gröner, A., Frese, K., Drenckhahn, D., Hauser, C., Rott, R., Doerfler, W., Klenk, H.D. J. Virol. (1989) [Pubmed]
  4. Early synthesis of Semliki Forest virus-specific proteins in infected chicken cells. Kaluza, G. J. Virol. (1976) [Pubmed]
  5. Oligosaccharides in the stem region maintain the influenza virus hemagglutinin in the metastable form required for fusion activity. Ohuchi, R., Ohuchi, M., Garten, W., Klenk, H.D. J. Virol. (1997) [Pubmed]
  6. Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Hallenberger, S., Bosch, V., Angliker, H., Shaw, E., Klenk, H.D., Garten, W. Nature (1992) [Pubmed]
  7. Recognition of viral glycoproteins by influenza A-specific cross-reactive cytolytic T lymphocytes. Koszinowski, U.H., Allen, H., Gething, M.J., Waterfield, M.D., Klenk, H.D. J. Exp. Med. (1980) [Pubmed]
  8. Maturation of the trans-Golgi network protease furin: compartmentalization of propeptide removal, substrate cleavage, and COOH-terminal truncation. Vey, M., Schäfer, W., Berghöfer, S., Klenk, H.D., Garten, W. J. Cell Biol. (1994) [Pubmed]
  9. Expression of the influenza virus haemagglutinin in insect cells by a baculovirus vector. Kuroda, K., Hauser, C., Rott, R., Klenk, H.D., Doerfler, W. EMBO J. (1986) [Pubmed]
  10. Inhibition of proteolytic cleavage of the hemagglutinin of influenza virus by the calcium-specific ionophore A23187. Klenk, H.D., Garten, W., Rott, R. EMBO J. (1984) [Pubmed]
  11. Physical and chemical methods for enhancing rapid detection of viruses and other agents. Hughes, J.H. Clin. Microbiol. Rev. (1993) [Pubmed]
  12. Influenza virus genome consists of eight distinct RNA species. McGeoch, D., Fellner, P., Newton, C. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  13. 5' and 3' terminal nucleotide sequences of the RNA genome segments of influenza virus. Robertson, J.S. Nucleic Acids Res. (1979) [Pubmed]
  14. Cooperation between the hemagglutinin of avian viruses and the matrix protein of human influenza A viruses. Scholtissek, C., Stech, J., Krauss, S., Webster, R.G. J. Virol. (2002) [Pubmed]
  15. NS1 proteins of avian influenza A viruses can act as antagonists of the human alpha/beta interferon response. Hayman, A., Comely, S., Lackenby, A., Hartgroves, L.C., Goodbourn, S., McCauley, J.W., Barclay, W.S. J. Virol. (2007) [Pubmed]
  16. Sequence specificity of furin, a proprotein-processing endoprotease, for the hemagglutinin of a virulent avian influenza virus. Walker, J.A., Molloy, S.S., Thomas, G., Sakaguchi, T., Yoshida, T., Chambers, T.M., Kawaoka, Y. J. Virol. (1994) [Pubmed]
  17. Retroviral display of functional binding domains fused to the amino terminus of influenza hemagglutinin. Hatziioannou, T., Delahaye, E., Martin, F., Russell, S.J., Cosset, F.L. Hum. Gene Ther. (1999) [Pubmed]
  18. Characterization of the attenuating M and NP gene segments of the avian influenza A/Mallard/78 virus during in vitro production of avian-human reassortant vaccine viruses and after replication in humans and primates. Treanor, J.J., Tierney, E.L., London, W.T., Murphy, B.R. Vaccine (1991) [Pubmed]
  19. Avian influenza virus infections in humans. Wong, S.S., Yuen, K.Y. Chest (2006) [Pubmed]
  20. Development of multiplex real-time RT-PCR as a diagnostic tool for avian influenza. Spackman, E., Senne, D.A., Bulaga, L.L., Trock, S., Suarez, D.L. Avian Dis. (2003) [Pubmed]
  21. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. Matrosovich, M.N., Matrosovich, T.Y., Gray, T., Roberts, N.A., Klenk, H.D. J. Virol. (2004) [Pubmed]
  22. Efficient expression of the tumor-associated antigen MAGE-3 in human dendritic cells, using an avian influenza virus vector. Strobel, I., Krumbholz, M., Menke, A., Hoffmann, E., Dunbar, P.R., Bender, A., Hobom, G., Steinkasserer, A., Schuler, G., Grassmann, R. Hum. Gene Ther. (2000) [Pubmed]
  23. Influence of the infection with lipid-containing viruses on the metabolism and pools of phospholipid precursors in animal cells. Carić-Lazar, M., Schwarz, R.T., Scholtissek, C. Eur. J. Biochem. (1978) [Pubmed]
  24. Latex fetuin spheres as probes for influenza virus neuraminidase in productively and abortively infected cells. Israël, A., Niveleau, A., Quash, G., Richard, M.H. Arch. Virol. (1979) [Pubmed]
  25. Effect of virus infection and cycloheximide treatment on the labeling of cellular phospholipids with 32 P. Audubert, F., Semmel, M. Intervirology (1977) [Pubmed]
  26. p38 mitogen-activated protein kinase-dependent hyperinduction of tumor necrosis factor alpha expression in response to avian influenza virus H5N1. Lee, D.C., Cheung, C.Y., Law, A.H., Mok, C.K., Peiris, M., Lau, A.S. J. Virol. (2005) [Pubmed]
  27. Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. Horimoto, T., Nakayama, K., Smeekens, S.P., Kawaoka, Y. J. Virol. (1994) [Pubmed]
  28. Genetically determined resistance to infection by hepatotropic influenza A virus in mice: effect of immunosuppression. Haller, O., Arnheiter, H., Lindenmann, J. Infect. Immun. (1976) [Pubmed]
  29. Conservation medicine and a new agenda for emerging diseases. Daszak, P., Tabor, G.M., Kilpatrick, A.M., Epstein, J., Plowright, R. Ann. N. Y. Acad. Sci. (2004) [Pubmed]
  30. Macrophage immunity to influenza virus: in vitro and in vivo studies. Bruinink, A., Haller, O. Exp. Cell Biol. (1979) [Pubmed]
  31. Sequence analysis of fowl plague virus mutant ts47 reveals a nonsense mutation in the NS1 gene. Robertson, J.S., Robertson, E., Roditi, I., Almond, J.W., Inglis, S.C. Virology (1983) [Pubmed]
  32. Retarded processing of influenza virus hemagglutinin in insect cells. Kuroda, K., Veit, M., Klenk, H.D. Virology (1991) [Pubmed]
  33. Potential for transmission of avian influenza viruses to pigs. Kida, H., Ito, T., Yasuda, J., Shimizu, Y., Itakura, C., Shortridge, K.F., Kawaoka, Y., Webster, R.G. J. Gen. Virol. (1994) [Pubmed]
  34. Comparison of nucleic acid-based detection of avian influenza H5N1 with virus isolation. Shan, S., Ko, L.S., Collins, R.A., Wu, Z., Chen, J., Chan, K.Y., Xing, J., Lau, L.T., Yu, A.C. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  35. Differences of nucleoproteins of human and avian influenza A virus strains shown by polyacrylamide gel electrophoresis and by the peptide mapping technique. Geisler, B., Seidel, W., Herrmann, B., Döhner, L. Arch. Virol. (1986) [Pubmed]
WikiGenes - Universities