The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Enteroendocrine Cells

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Enteroendocrine Cells

 

High impact information on Enteroendocrine Cells

 

Biological context of Enteroendocrine Cells

 

Anatomical context of Enteroendocrine Cells

 

Associations of Enteroendocrine Cells with chemical compounds

 

Gene context of Enteroendocrine Cells

  • The glucagon-like peptides (GLP-1 and GLP-2) are proglucagon-derived peptides cosecreted from gut endocrine cells in response to nutrient ingestion [14].
  • Peptide YY(+) cells gave rise to all L-type enteroendocrine cells and to islet partial differential and PP cells [22].
  • NPY is expressed exclusively in neurons, whereas PYY and PP are produced primarily in gut endocrine cells [23].
  • Taken together, these results indicate that PC3 has the same specificity as the convertase that is responsible for the processing of proglucagon to tGLP-1, glicentin and oxyntomodulin in the intestinal L cell, and it is concluded that this enzyme is thus able to act alone in this processing pathway [24].
  • Pax6 is expressed in enteroendocrine cells, binds to the G1 and G3 elements in the proglucagon promoter, and activates proglucagon gene transcription [25].
 

Analytical, diagnostic and therapeutic context of Enteroendocrine Cells

References

  1. Expression of SNARE proteins in enteroendocrine cell lines and functional role of tetanus toxin-sensitive proteins in cholecystokinin release. Némoz-Gaillard, E., Bosshard, A., Regazzi, R., Bernard, C., Cuber, J.C., Takahashi, M., Catsicas, S., Chayvialle, J.A., Abello, J. FEBS Lett. (1998) [Pubmed]
  2. GABA affects the release of gastrin and somatostatin from rat antral mucosa. Harty, R.F., Franklin, P.A. Nature (1983) [Pubmed]
  3. Somatostatin cell processes as pathways for paracrine secretion. Larsson, L.I., Goltermann, N., de Magistris, L., Rehfeld, J.F., Schwartz, T.W. Science (1979) [Pubmed]
  4. Targeted deletion of a cis-regulatory region reveals differential gene dosage requirements for Pdx1 in foregut organ differentiation and pancreas formation. Fujitani, Y., Fujitani, S., Boyer, D.F., Gannon, M., Kawaguchi, Y., Ray, M., Shiota, M., Stein, R.W., Magnuson, M.A., Wright, C.V. Genes Dev. (2006) [Pubmed]
  5. Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity. Lee, C.S., Perreault, N., Brestelli, J.E., Kaestner, K.H. Genes Dev. (2002) [Pubmed]
  6. The basic helix-loop-helix protein BETA2 interacts with p300 to coordinate differentiation of secretin-expressing enteroendocrine cells. Mutoh, H., Naya, F.J., Tsai, M.J., Leiter, A.B. Genes Dev. (1998) [Pubmed]
  7. The basic helix-loop-helix transcription factor BETA2/NeuroD is expressed in mammalian enteroendocrine cells and activates secretin gene expression. Mutoh, H., Fung, B.P., Naya, F.J., Tsai, M.J., Nishitani, J., Leiter, A.B. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  8. A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas. Chung, J.S., Dircksen, H., Webster, S.G. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  9. Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut. Jetton, T.L., Liang, Y., Pettepher, C.C., Zimmerman, E.C., Cox, F.G., Horvath, K., Matschinsky, F.M., Magnuson, M.A. J. Biol. Chem. (1994) [Pubmed]
  10. Cyclin D1 represses the basic helix-loop-helix transcription factor, BETA2/NeuroD. Ratineau, C., Petry, M.W., Mutoh, H., Leiter, A.B. J. Biol. Chem. (2002) [Pubmed]
  11. Enteroendocrine cell expression of a cholecystokinin gene construct in transgenic mice and cultured cells. Lay, J.M., Bane, G., Brunkan, C.S., Davis, J., Lopez-Diaz, L., Samuelson, L.C. Am. J. Physiol. Gastrointest. Liver Physiol. (2005) [Pubmed]
  12. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. Jackson, R.S., Creemers, J.W., Farooqi, I.S., Raffin-Sanson, M.L., Varro, A., Dockray, G.J., Holst, J.J., Brubaker, P.L., Corvol, P., Polonsky, K.S., Ostrega, D., Becker, K.L., Bertagna, X., Hutton, J.C., White, A., Dattani, M.T., Hussain, K., Middleton, S.J., Nicole, T.M., Milla, P.J., Lindley, K.J., O'Rahilly, S. J. Clin. Invest. (2003) [Pubmed]
  13. Ileal proglucagon gene expression in the rat: characterization in intestinal adaptation using in situ hybridization. Fuller, P.J., Beveridge, D.J., Taylor, R.G. Gastroenterology (1993) [Pubmed]
  14. Biological actions and therapeutic potential of the glucagon-like peptides. Drucker, D.J. Gastroenterology (2002) [Pubmed]
  15. Postinfectious irritable bowel syndrome. Spiller, R.C. Gastroenterology (2003) [Pubmed]
  16. Mapping enteroendocrine cell populations in transgenic mice reveals an unexpected degree of complexity in cellular differentiation within the gastrointestinal tract. Roth, K.A., Hertz, J.M., Gordon, J.I. J. Cell Biol. (1990) [Pubmed]
  17. Developmental profile of chromogranin, hormonal peptides, and 5-hydroxytryptamine in gastrointestinal endocrine cells. Facer, P., Bishop, A.E., Cole, G.A., Aitchison, M., Kendall, C.H., van Aswegen, G., Penketh, R.J., Rodek, C.H., McKeever, P., Polak, J.M. Gastroenterology (1989) [Pubmed]
  18. Adaptation of enteroendocrine cells in response to jejunal-ileal transposition in the rat. Aiken, K.D., Yu, W., Wright, J.R., Roth, K.A. Gastroenterology (1994) [Pubmed]
  19. Spatial differentiation of the intestinal epithelium: analysis of enteroendocrine cells containing immunoreactive serotonin, secretin, and substance P in normal and transgenic mice. Roth, K.A., Gordon, J.I. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  20. Characterization of promoter elements required for cell-specific expression of the neurotensin/neuromedin N gene in a human endocrine cell line. Evers, B.M., Wang, X., Zhou, Z., Townsend, C.M., McNeil, G.P., Dobner, P.R. Mol. Cell. Biol. (1995) [Pubmed]
  21. Targeted ablation of secretin-producing cells in transgenic mice reveals a common differentiation pathway with multiple enteroendocrine cell lineages in the small intestine. Rindi, G., Ratineau, C., Ronco, A., Candusso, M.E., Tsai, M., Leiter, A.B. Development (1999) [Pubmed]
  22. Energy homeostasis and gastrointestinal endocrine differentiation do not require the anorectic hormone peptide YY. Schonhoff, S., Baggio, L., Ratineau, C., Ray, S.K., Lindner, J., Magnuson, M.A., Drucker, D.J., Leiter, A.B. Mol. Cell. Biol. (2005) [Pubmed]
  23. Cloning of a human receptor of the NPY receptor family with high affinity for pancreatic polypeptide and peptide YY. Lundell, I., Blomqvist, A.G., Berglund, M.M., Schober, D.A., Johnson, D., Statnick, M.A., Gadski, R.A., Gehlert, D.R., Larhammar, D. J. Biol. Chem. (1995) [Pubmed]
  24. Role of the prohormone convertase PC3 in the processing of proglucagon to glucagon-like peptide 1. Rouillé, Y., Kantengwa, S., Irminger, J.C., Halban, P.A. J. Biol. Chem. (1997) [Pubmed]
  25. Essential requirement for Pax6 in control of enteroendocrine proglucagon gene transcription. Hill, M.E., Asa, S.L., Drucker, D.J. Mol. Endocrinol. (1999) [Pubmed]
  26. GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow. Guan, X., Karpen, H.E., Stephens, J., Bukowski, J.T., Niu, S., Zhang, G., Stoll, B., Finegold, M.J., Holst, J.J., Hadsell, D., Hadsell, D.L., Nichols, B.L., Burrin, D.G. Gastroenterology (2006) [Pubmed]
  27. Pax-2 activates the proglucagon gene promoter but is not essential for proglucagon gene expression or development of proglucagon-producing cell lineages in the murine pancreas or intestine. Flock, G., Drucker, D.J. Mol. Endocrinol. (2002) [Pubmed]
  28. Foxa3 (HNF-3gamma) binds to and activates the rat proglucagon gene promoter but is not essential for proglucagon gene expression. Liu, Y., Shen, W., Brubaker, P.L., Kaestner, K.H., Drucker, D.J. Biochem. J. (2002) [Pubmed]
  29. The effect of total parenteral nutrition in the rat on a sub-group of enteroendocrine cells. Buchan, A.M., Green, K.A., Innis, S.M., Pederson, R.A. Regul. Pept. (1985) [Pubmed]
  30. Exposure to ionizing radiation modifies circulating gastrin levels and gastrointestinal endocrine cell densities in the rat. Lehy, T., Dessirier, V., Attoub, S., Bado, A., Griffiths, N.M., Linard, C. Int. J. Radiat. Biol. (1998) [Pubmed]
 
WikiGenes - Universities