The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Glg1  -  golgi glycoprotein 1

Rattus norvegicus

Synonyms: E-selectin ligand 1, ESL-1, Esl1, Golgi apparatus protein 1, Golgi sialoglycoprotein MG-160, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Glg1

 

Psychiatry related information on Glg1

 

High impact information on Glg1

 

Chemical compound and disease context of Glg1

 

Biological context of Glg1

 

Anatomical context of Glg1

  • These findings suggest that in rat hepatocytes sialylation of N-linked glycoproteins occurs in the complex formed by the trans-cisternae and the trans-tubular network of Golgi apparatus [18].
  • When the intracellular transit of 3H-labeled (pro)-insulin polypeptides is perturbed by monensin in the pancreatic B-cell, proinsulin conversion is impaired and the radioactive peptides accumulate in a clathrin-coated membrane compartment related to the Golgi apparatus [22].
  • The Ca and pH requirements of these proteinases suggested that the type-II proteinase would be active in the Golgi apparatus and the secretory granule, whereas type-I activity would be compatible only with the intragranular environment [23].
  • The Golgi apparatus in animal cells comprises a reticulum of linked stacks in the pericentriolar and often in the juxtanuclear regions of the cell [24].
  • This conclusion failed to support the current theory from biochemical studies that albumin is synthesized by bound ribosomes, discharged into the cisternae of rough endoplasmic reticulum, and transported to the smooth endoplasmic reticulum and then to the Golgi apparatus [25].
 

Associations of Glg1 with chemical compounds

  • This region of the Golgi apparatus exhibited both TPPase and CMPase activity and was the intracellular site where sialic acid residues bound to glycoprotein were detected using the Limax flavus lectin [18].
  • The fusion protein was transported to the Golgi apparatus, and was esterified to palmitic acid, but it was not transported to the cell surface [26].
  • The guanosine triphosphatase Rab1 regulates the transport of newly synthesized proteins from the endoplasmic reticulum to the Golgi apparatus through interaction with effector molecules, but the molecular mechanisms by which this occurs are unknown [27].
  • However, after infusion of ursodeoxycholic acid, staining of GA and SER vesicles was observed when the liver was fixed with PF and saponin [28].
  • These results show that ethanol administration causes an impaired movement of secretory proteins along the secretory pathway, and that secretory proteins accumulate mainly, but not exclusively, in the Golgi apparatus [29].
 

Physical interactions of Glg1

  • These data indicate an extremely high turnover of leptin receptors in hypothalamic target sites, but also raise the possibility that leptin may interact with the Golgi apparatus-related mechanisms to alter intracellular mechanisms [30].
  • Similarly, rat MG160 subjected to deglycosylation by peptide:N-glycosidase F (PNGase) bound 125I bFGF [31].
  • Suppression of the whole protein or expression of a mutant form lacking the Rho-binding activity results in dispersion of the Golgi apparatus [32].
  • The small GTP-binding protein ADP-ribosylation factor (ARF) has been shown to regulate the interaction of actin and actin-binding proteins with the Golgi apparatus [33].
  • This finding suggests that the major form of intracellular transferrin oligosaccharide in the course of intracellular transport from the endoplasmic reticulum to the Golgi apparatus is Man8GlcNAc2 [34].
 

Enzymatic interactions of Glg1

 

Regulatory relationships of Glg1

 

Other interactions of Glg1

 

Analytical, diagnostic and therapeutic context of Glg1

References

  1. MG-160, a membrane sialoglycoprotein of the medial cisternae of the rat Golgi apparatus, binds basic fibroblast growth factor and exhibits a high level of sequence identity to a chicken fibroblast growth factor receptor. Gonatas, J.O., Mourelatos, Z., Stieber, A., Lane, W.S., Brosius, J., Gonatas, N.K. J. Cell. Sci. (1995) [Pubmed]
  2. Stimulation of insulin secretion reveals heterogeneity of pancreatic B cells in vivo. Stefan, Y., Meda, P., Neufeld, M., Orci, L. J. Clin. Invest. (1987) [Pubmed]
  3. Effect of colchicine on the Golgi complex of rat pancreatic acinar cells. Pavelka, M., Ellinger, A. J. Cell Biol. (1983) [Pubmed]
  4. A heterotrimeric G protein, G alpha i-3, on Golgi membranes regulates the secretion of a heparan sulfate proteoglycan in LLC-PK1 epithelial cells. Stow, J.L., de Almeida, J.B., Narula, N., Holtzman, E.J., Ercolani, L., Ausiello, D.A. J. Cell Biol. (1991) [Pubmed]
  5. A novel 58-kDa protein associates with the Golgi apparatus and microtubules. Bloom, G.S., Brashear, T.A. J. Biol. Chem. (1989) [Pubmed]
  6. Secretion in the rat coagulating gland (anterior prostate) after copulation. Hawkins, W.E., Geuze, J.J. Cell Tissue Res. (1977) [Pubmed]
  7. Alcohol consumption during pregnancy alters glycoconjugates, galactosyltransferase activity and beta-COP proteins in the Golgi apparatus of hepatocytes in developing liver. Seguí, J.M., Guasch, R., Azorin, I., Guerri, C., Renau-Piqueras, J. Int. J. Dev. Biol. (1996) [Pubmed]
  8. Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Sütterlin, C., Hsu, P., Mallabiabarrena, A., Malhotra, V. Cell (2002) [Pubmed]
  9. Protein interactions regulating vesicle transport between the endoplasmic reticulum and Golgi apparatus in mammalian cells. Hay, J.C., Chao, D.S., Kuo, C.S., Scheller, R.H. Cell (1997) [Pubmed]
  10. The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Nakamura, N., Lowe, M., Levine, T.P., Rabouille, C., Warren, G. Cell (1997) [Pubmed]
  11. Regulation of Golgi structure through heterotrimeric G proteins. Jamora, C., Takizawa, P.A., Zaarour, R.F., Denesvre, C., Faulkner, D.J., Malhotra, V. Cell (1997) [Pubmed]
  12. Tubulovesicular processes emerge from trans-Golgi cisternae, extend along microtubules, and interlink adjacent trans-golgi elements into a reticulum. Cooper, M.S., Cornell-Bell, A.H., Chernjavsky, A., Dani, J.W., Smith, S.J. Cell (1990) [Pubmed]
  13. Monensin inhibition of hyaluronate synthesis in rat fibrosarcoma cells. Goldberg, R.L., Toole, B.P. J. Biol. Chem. (1983) [Pubmed]
  14. Endocytic membrane traffic to the Golgi apparatus in a regulated secretory cell line. Green, S.A., Kelly, R.B. J. Biol. Chem. (1990) [Pubmed]
  15. Rate of retrograde transport of cholera toxin from the plasma membrane to the Golgi apparatus and endoplasmic reticulum decreases during neuronal development. Sofer, A., Futerman, A.H. J. Neurochem. (1996) [Pubmed]
  16. Retargeting of viral glycoproteins into a non-exporting compartment during the myogenic differentiation of rat L6 cells. Kaisto, T., Luukela, V., Birr, E., Metsikkö, K. Cell Tissue Res. (2002) [Pubmed]
  17. Acute response of testicular interstitial tissue in rats to the cytotoxic drug ethane dimethanesulphonate. An ultrastructural and hormonal assay study. Kerr, J.B., Bartlett, J.M., Donachie, K. Cell Tissue Res. (1986) [Pubmed]
  18. Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation. Roth, J., Taatjes, D.J., Lucocq, J.M., Weinstein, J., Paulson, J.C. Cell (1985) [Pubmed]
  19. Gap junction turnover, intracellular trafficking, and phosphorylation of connexin43 in brefeldin A-treated rat mammary tumor cells. Laird, D.W., Castillo, M., Kasprzak, L. J. Cell Biol. (1995) [Pubmed]
  20. Sites of lipoprotein particles in normal rat hepatocytes. Novikoff, P.M., Yam, A. J. Cell Biol. (1978) [Pubmed]
  21. A Rab1 mutant affecting guanine nucleotide exchange promotes disassembly of the Golgi apparatus. Wilson, B.S., Nuoffer, C., Meinkoth, J.L., McCaffery, M., Feramisco, J.R., Balch, W.E., Farquhar, M.G. J. Cell Biol. (1994) [Pubmed]
  22. A clathrin-coated, Golgi-related compartment of the insulin secreting cell accumulates proinsulin in the presence of monensin. Orci, L., Halban, P., Amherdt, M., Ravazzola, M., Vassalli, J.D., Perrelet, A. Cell (1984) [Pubmed]
  23. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases. Davidson, H.W., Rhodes, C.J., Hutton, J.C. Nature (1988) [Pubmed]
  24. Matrix proteins can generate the higher order architecture of the Golgi apparatus. Seemann, J., Jokitalo, E., Pypaert, M., Warren, G. Nature (2000) [Pubmed]
  25. Electron microscopy of albumin synthesis. Lin, C., Chang, J. Science (1975) [Pubmed]
  26. Conversion of a secretory protein into a transmembrane protein results in its transport to the Golgi complex but not to the cell surface. Guan, J.L., Rose, J.K. Cell (1984) [Pubmed]
  27. Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Allan, B.B., Moyer, B.D., Balch, W.E. Science (2000) [Pubmed]
  28. Immunoperoxidase localization of bile salts in rat liver cells. Evidence for a role of the Golgi apparatus in bile salt transport. Lamri, Y., Roda, A., Dumont, M., Feldmann, G., Erlinger, S. J. Clin. Invest. (1988) [Pubmed]
  29. Subcellular location of secretory proteins retained in the liver during the ethanol-induced inhibition of hepatic protein secretion in the rat. Volentine, G.D., Tuma, D.J., Sorrell, M.F. Gastroenterology (1986) [Pubmed]
  30. Leptin receptor immunoreactivity is associated with the Golgi apparatus of hypothalamic neurons and glial cells. Diano, S., Kalra, S.P., Horvath, T.L. J. Neuroendocrinol. (1998) [Pubmed]
  31. The Golgi sialoglycoprotein MG160, expressed in Pichia pastoris, does not require complex carbohydrates and sialic acid for secretion and basic fibroblast growth factor binding. Chen, Y.J., Gonatas, N.K. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  32. Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeleton regulation. Camera, P., da Silva, J.S., Griffiths, G., Giuffrida, M.G., Ferrara, L., Schubert, V., Imarisio, S., Silengo, L., Dotti, C.G., Di Cunto, F. Nat. Cell Biol. (2003) [Pubmed]
  33. Activated ADP-ribosylation factor assembles distinct pools of actin on golgi membranes. Fucini, R.V., Navarrete, A., Vadakkan, C., Lacomis, L., Erdjument-Bromage, H., Tempst, P., Stamnes, M. J. Biol. Chem. (2000) [Pubmed]
  34. Intracellular forms of transferrin oligosaccharide chains in rat liver. Nakada, H., Kohno, H., Kawasaki, T., Tashiro, Y. Eur. J. Biochem. (1983) [Pubmed]
  35. GRP94 (endoplasmin) co-purifies with and is phosphorylated by Golgi apparatus casein kinase. Brunati, A.M., Contri, A., Muenchbach, M., James, P., Marin, O., Pinna, L.A. FEBS Lett. (2000) [Pubmed]
  36. Isolation and characterization of the principal ATPase associated with transitional endoplasmic reticulum of rat liver. Zhang, L., Ashendel, C.L., Becker, G.W., Morré, D.J. J. Cell Biol. (1994) [Pubmed]
  37. Morphological effects of somatostatin on rat somatotrophs previously activated by growth hormone-releasing factor. Shimada, O., Tosaka-Shimada, H., Ishikawa, H. Cell Tissue Res. (1990) [Pubmed]
  38. Calmodulin-NADH semidehydroascorbate oxidoreductase interactions of clathrin coated vesicles. Sun, I.L., Crane, F.L., Morré, D.J. Biochem. Biophys. Res. Commun. (1983) [Pubmed]
  39. Modulation of the Golgi apparatus in stimulated and nonstimulated prolactin cells of female rats. Rambourg, A., Clermont, Y., Chrétien, M., Olivier, L. Anat. Rec. (1993) [Pubmed]
  40. Polo-like kinase is required for the fragmentation of pericentriolar Golgi stacks during mitosis. Sütterlin, C., Lin, C.Y., Feng, Y., Ferris, D.K., Erikson, R.L., Malhotra, V. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  41. Differential association and distribution of acetyl- and butyrylcholinesterases within rat liver subcellular organelles. Perelman, A., Abeijon, C., Hirschberg, C.B., Inestrosa, N.C., Brandan, E. J. Biol. Chem. (1990) [Pubmed]
  42. Phospholipase D2 is localized to the rims of the Golgi apparatus in mammalian cells. Freyberg, Z., Bourgoin, S., Shields, D. Mol. Biol. Cell (2002) [Pubmed]
  43. Endoplasmic reticulum stress in PLP-overexpressing transgenic rats: gray matter oligodendrocytes are more vulnerable than white matter oligodendrocytes. Bauer, J., Bradl, M., Klein, M., Leisser, M., Deckwerth, T.L., Wekerle, H., Lassmann, H. J. Neuropathol. Exp. Neurol. (2002) [Pubmed]
  44. A microtubule-binding protein associated with membranes of the Golgi apparatus. Allan, V.J., Kreis, T.E. J. Cell Biol. (1986) [Pubmed]
  45. Reconstitution of the Golgi apparatus after microinjection of rat liver Golgi fragments into Xenopus oocytes. Paiement, J., Jolicoeur, M., Fazel, A., Bergeron, J.J. J. Cell Biol. (1989) [Pubmed]
  46. Isolation of a matrix that binds medial Golgi enzymes. Slusarewicz, P., Nilsson, T., Hui, N., Watson, R., Warren, G. J. Cell Biol. (1994) [Pubmed]
  47. Assembly and disassembly of the Golgi complex: two processes arranged in a cis-trans direction. Alcalde, J., Bonay, P., Roa, A., Vilaro, S., Sandoval, I.V. J. Cell Biol. (1992) [Pubmed]
 
WikiGenes - Universities