The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Immunotherapy, Active

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Immunotherapy, Active

  • Because MMP-2 activity is critical for melanoma progression, the MMP-2 peptide should be cross-presented by most progressing melanomas and represents a unique antigen for vaccine therapy of these tumors [1].
  • Combination drug and vaccine therapy had benefits based on sustained reduction of viraemia, antigenaemia, and hepatic WHV DNA and RNA; inhibition of progression of chronic hepatitis; reduced frequency of chronic liver injury; and delayed onset of hepatocellular carcinoma (HCC) [2].
  • To evaluate the potential of defective herpes simplex virus (HSV) amplicon vectors as in vivo cytokine gene transfer vehicles for active immunotherapy, we generated a defective HSV vector that encodes the murine granulocyte-macrophage colony-stimulating factor (GM-CSF) gene, using a replication-defective HSV as helper virus [3].
  • We compared the specificity of natural and induced MUC1 Abs with the objective of defining an effective MUC1 vaccine for active immunotherapy of adenocarcinoma patients [4].
  • The use of this new recombinant CEA vaccinia construct may thus provide an approach in the specific active immunotherapy of human GI cancer and other CEA expressing carcinoma types [5].

High impact information on Immunotherapy, Active

  • GM-CSF and IL-2 vaccine therapy and pretreatment with gammaIFN represent effective strategies in reducing hepatic tumor [6].
  • This is the first report demonstrating that a vaccine therapy is capable of breaking "immune tolerance" to CEA in patients with CEA positive tumors [7].
  • This could advance vaccine therapy against cancer provided that precursor CTL recognizing telomerase peptides in normal adults and cancer patients can be expanded through immunization [8].
  • Observations of several patients who had evidence of disease relapse restricted to a rising biochemical marker, prostate-specific antigen (PSA), indicated that a treatment effect could occur within 3 months after completion of the vaccine therapy [9].
  • Our results show a unique fine specificity of rituximab, define the molecular basis for the lack of rituximab reactivity with mouse CD20 (mCD20), and the potential of targeting CD20 in an active immunotherapy setting [10].

Chemical compound and disease context of Immunotherapy, Active


Biological context of Immunotherapy, Active


Anatomical context of Immunotherapy, Active


Associations of Immunotherapy, Active with chemical compounds


Gene context of Immunotherapy, Active


Analytical, diagnostic and therapeutic context of Immunotherapy, Active


  1. alpha v beta3-dependent cross-presentation of matrix metalloproteinase-2 by melanoma cells gives rise to a new tumor antigen. Godefroy, E., Moreau-Aubry, A., Diez, E., Dreno, B., Jotereau, F., Guilloux, Y. J. Exp. Med. (2005) [Pubmed]
  2. Clevudine therapy with vaccine inhibits progression of chronic hepatitis and delays onset of hepatocellular carcinoma in chronic woodchuck hepatitis virus infection. Korba, B.E., Cote, P.J., Menne, S., Toshkov, I., Baldwin, B.H., Wells, F.V., Tennant, B.C., Gerin, J.L. Antivir. Ther. (Lond.) (2004) [Pubmed]
  3. Tumor growth inhibition by intratumoral inoculation of defective herpes simplex virus vectors expressing granulocyte-macrophage colony-stimulating factor. Toda, M., Martuza, R.L., Rabkin, S.D. Mol. Ther. (2000) [Pubmed]
  4. Reactivity of natural and induced human antibodies to MUC1 mucin with MUC1 peptides and n-acetylgalactosamine (GalNAc) peptides. von Mensdorff-Pouilly, S., Petrakou, E., Kenemans, P., van Uffelen, K., Verstraeten, A.A., Snijdewint, F.G., van Kamp, G.J., Schol, D.J., Reis, C.A., Price, M.R., Livingston, P.O., Hilgers, J. Int. J. Cancer (2000) [Pubmed]
  5. A recombinant vaccinia virus expressing human carcinoembryonic antigen (CEA). Kaufman, H., Schlom, J., Kantor, J. Int. J. Cancer (1991) [Pubmed]
  6. Prevention of hepatic tumor metastases in rats with herpes viral vaccines and gamma-interferon. Karpoff, H.M., D'Angelica, M., Blair, S., Brownlee, M.D., Federoff, H., Fong, Y. J. Clin. Invest. (1997) [Pubmed]
  7. Immune response to the carcinoembryonic antigen in patients treated with an anti-idiotype antibody vaccine. Foon, K.A., Chakraborty, M., John, W.J., Sherratt, A., Köhler, H., Bhattacharya-Chatterjee, M. J. Clin. Invest. (1995) [Pubmed]
  8. Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Minev, B., Hipp, J., Firat, H., Schmidt, J.D., Langlade-Demoyen, P., Zanetti, M. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  9. Carbohydrate vaccines in cancer: immunogenicity of a fully synthetic globo H hexasaccharide conjugate in man. Slovin, S.F., Ragupathi, G., Adluri, S., Ungers, G., Terry, K., Kim, S., Spassova, M., Bornmann, W.G., Fazzari, M., Dantis, L., Olkiewicz, K., Lloyd, K.O., Livingston, P.O., Danishefsky, S.J., Scher, H.I. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  10. Generation of biologically active linear and cyclic peptides has revealed a unique fine specificity of rituximab and its possible cross-reactivity with acid sphingomyelinase-like phosphodiesterase 3b precursor. Perosa, F., Favoino, E., Caragnano, M.A., Dammacco, F. Blood (2006) [Pubmed]
  11. Specific active immunotherapy does not prolong survival in surgically treated patients with stage IIB malignant melanoma and may promote early recurrence. Hedley, D.W., McElwain, T.J., Currie, G.A. Br. J. Cancer (1978) [Pubmed]
  12. Targeting lethal minimal residual disease in small cell lung cancer. Patel, J.D., Krug, L.M., Azzoli, C.G., Gomez, J., Kris, M.G., Miller, V.A. Semin. Oncol. (2003) [Pubmed]
  13. Vaccination with allergen-IL-18 fusion DNA protects against, and reverses established, airway hyperreactivity in a murine asthma model. Maecker, H.T., Hansen, G., Walter, D.M., DeKruyff, R.H., Levy, S., Umetsu, D.T. J. Immunol. (2001) [Pubmed]
  14. Induction of ErbB-2/neu-specific protective and therapeutic antitumor immunity using genetically modified dendritic cells: enhanced efficacy by cotransduction of gene encoding IL-12. Chen, Y., Emtage, P., Zhu, Q., Foley, R., Muller, W., Hitt, M., Gauldie, J., Wan, Y. Gene Ther. (2001) [Pubmed]
  15. Augmenting major histocompatibility complex class I expression by murine tumors in vivo enhances antitumor immunity induced by an active immunotherapy strategy. Merritt, R.E., Yamada, R.E., Crystal, R.G., Korst, R.J. J. Thorac. Cardiovasc. Surg. (2004) [Pubmed]
  16. Melan-A/MART-1 antigen expression in cutaneous and ocular melanomas. Nicotra, M.R., Nisticò, P., Mangoni, A., Di Filippo, F., Marincola, F.M., Natali, P.G. J. Immunother. (1997) [Pubmed]
  17. Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Brossart, P., Heinrich, K.S., Stuhler, G., Behnke, L., Reichardt, V.L., Stevanovic, S., Muhm, A., Rammensee, H.G., Kanz, L., Brugger, W. Blood (1999) [Pubmed]
  18. A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Morse, M.A., Deng, Y., Coleman, D., Hull, S., Kitrell-Fisher, E., Nair, S., Schlom, J., Ryback, M.E., Lyerly, H.K. Clin. Cancer Res. (1999) [Pubmed]
  19. Serum antibodies to EpCAM in healthy donors but not ulcerative colitis patients. Furth, E.E., Li, J., Purev, E., Solomon, A.C., Rogler, G., Mick, R., Putt, M., Zhang, T., Somasundaram, R., Swoboda, R., Herlyn, D. Cancer Immunol. Immunother. (2006) [Pubmed]
  20. Superantigen-SEA gene modified tumor vaccine for hepatocellular carcinoma: an in vitro study. Lu, S.Y., Sui, Y.F., Li, Z.S., Ye, J., Dong, H.L., Qu, P., Zhang, X.M., Wang, W.Y., Li, Y.S. World J. Gastroenterol. (2004) [Pubmed]
  21. Disseminated melanoma, preclinical therapeutic studies, clinical trials, and patient treatment. Lejeune, F., Bauer, J., Leyvraz, S., Liénard, D. Current opinion in oncology. (1993) [Pubmed]
  22. 6-Mercaptopurine-induced potentiation of active immunotherapy in L1210-bearing mice treated with concanavalin A-bound leukemia cell vaccine. Kataoka, T., Akahori, Y., Sakurai, Y. Cancer Res. (1984) [Pubmed]
  23. Active immunization of hamsters against pancreatic carcinoma with lipid-treated cells or their shed antigens. Skornick, Y., Kurman, C.C., Sindelar, W.F. Cancer Res. (1984) [Pubmed]
  24. Induction of alpha-N-acetylgalactosamine-O-serine/threonine (Tn) antigen-mediated cellular immune response for active immunotherapy in mice. Singhal, A., Fohn, M., Hakomori, S. Cancer Res. (1991) [Pubmed]
  25. Correlations between humoral immunity and successful chemotherapy-immunotherapy. Cantrell, J.L., Killion, J.J., Kollmorgen, G.M. Cancer Res. (1976) [Pubmed]
  26. Immunostimulatory DNA sequences inhibit IL-5, eosinophilic inflammation, and airway hyperresponsiveness in mice. Broide, D., Schwarze, J., Tighe, H., Gifford, T., Nguyen, M.D., Malek, S., Van Uden, J., Martin-Orozco, E., Gelfand, E.W., Raz, E. J. Immunol. (1998) [Pubmed]
  27. A phase-I clinical trial of active immunotherapy for acute leukemia using inactivated autologous leukemia cells mixed with IL-2, GM-CSF, and IL-6. Zhang, W.G., Liu, S.H., Cao, X.M., Cheng, Y.X., Ma, X.R., Yang, Y., Wang, Y.L. Leuk. Res. (2005) [Pubmed]
  28. Expression of MAGE genes in esophageal squamous-cell carcinoma. Quillien, V., Raoul, J.L., Heresbach, D., Collet, B., Toujas, L., Brasseur, F. Anticancer Res. (1997) [Pubmed]
  29. The role of IL-13 in the generation of dendritic cells in vitro. Morse, M.A., Lyerly, H.K., Li, Y. J. Immunother. (1999) [Pubmed]
  30. Baculovirus recombinants expressing the human carcinoembryonic antigen gene. Salgaller, M.L., Bei, R., Schlom, J., Poole, D.J., Robbins, P.F. Cancer Res. (1993) [Pubmed]
  31. C-C chemokine receptor 5 on stromal cells promotes pulmonary metastasis. van Deventer, H.W., O'Connor, W., Brickey, W.J., Aris, R.M., Ting, J.P., Serody, J.S. Cancer Res. (2005) [Pubmed]
  32. Costimulatory function of umbilical cord blood CD14+ and CD34+ derived dendritic cells. Dilioglou, S., Cruse, J.M., Lewis, R.E. Exp. Mol. Pathol. (2003) [Pubmed]
  33. MAb17-1A and cytokines for the treatment of patients with colorectal carcinoma. Frödin, J.E., Fagerberg, J., Hjelm Skog, A.L., Liljefors, M., Ragnhammar, P., Mellstedt, H. Hybrid. Hybridomics (2002) [Pubmed]
  34. A clinical trial of active immunotherapy with anti-idiotypic vaccine in nasopharyngeal carcinoma patients. Li, G., Xie, L., Zhou, G., Fu, H., Zhou, J., Sun, Q. Chin. Med. J. (2002) [Pubmed]
  35. Immunotherapy of cancer. Generation of CEA specific CTL using CEA peptide pulsed dendritic cells. Alters, S.E., Gadea, J.R., Philip, R. Adv. Exp. Med. Biol. (1997) [Pubmed]
WikiGenes - Universities