The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Quantum Dots

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Quantum Dots

 

High impact information on Quantum Dots

  • Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection [5].
  • Diffusion constants and transport rates were determined with single molecule sensitivity by tracking receptors labeled with EGF conjugated to fluorescent quantum dots [6].
  • Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots [7].
  • Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films [8].
  • Cadmium sulphide quantum dots in morphologically tunable triblock copolymer aggregates [9].
 

Chemical compound and disease context of Quantum Dots

 

Biological context of Quantum Dots

 

Anatomical context of Quantum Dots

 

Associations of Quantum Dots with chemical compounds

  • Targeting quantum dots to surface proteins in living cells with biotin ligase [19].
  • We propose that the formation of charge-stabilized hydrogen bonds between the positively charged amines of the homopolymer polyelectrolytes and the negatively charged citrate molecules stabilizing the quantum dots is responsible for the macroscopic phase separation in this completely aqueous system [20].
  • In this study, we report structural, vibrational, and magnetic data providing evidence of random ion displacement in the core of CdSe quantum dots on the Cd(2+) sites by Co(2+) ions (between x = 0 and 0.30) [21].
  • Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride [22].
  • This paper reports the application of ligand-field electronic absorption spectroscopy to probe Co(2+) dopant ions in diluted magnetic semiconductor quantum dots [23].
 

Gene context of Quantum Dots

  • Analysis of CD36 expression on human monocytic cells and atherosclerotic tissue sections with quantum dots: investigation by flow cytometry and spectral imaging microscopy [24].
  • Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity [25].
  • Beads preferentially deacetylated by SIRT1 were biotinylated and labeled with streptavidin-coated quantum dots [26].
  • We describe here the use of quantum dots in mortalin imaging of normal and cancer cells [27].
  • We consider electrons confined to a quantum dot interacting antiferromagnetically with a spin-1 / 2 Kondo impurity [28].
 

Analytical, diagnostic and therapeutic context of Quantum Dots

References

  1. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Edgar, R., McKinstry, M., Hwang, J., Oppenheim, A.B., Fekete, R.A., Giulian, G., Merril, C., Nagashima, K., Adhya, S. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  2. Iridium-complex modified CdSe/ZnS quantum dots; a conceptual design for bi-functionality toward imaging and photosensitization. Hsieh, J.M., Ho, M.L., Wu, P.W., Chou, P.T., Tsai, T.T., Chi, Y. Chem. Commun. (Camb.) (2006) [Pubmed]
  3. Detection of Mycobacterium bovis Bacillus Calmette-Guerin using quantum dot immuno-conjugates. Otsuka, Y., Hanaki, K., Zhao, J., Ohtsuki, R., Toyooka, K., Yoshikura, H., Kuratsuji, T., Yamamoto, K., Kirikae, T. Jpn. J. Infect. Dis. (2004) [Pubmed]
  4. Peptide-directed binding of quantum dots to integrins in human fibroblast. Shi, P., Chen, H., Cho, M.R., Stroscio, M.A. IEEE transactions on nanobioscience. (2006) [Pubmed]
  5. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Chan, W.C., Nie, S. Science (1998) [Pubmed]
  6. Reaching out for signals: filopodia sense EGF and respond by directed retrograde transport of activated receptors. Lidke, D.S., Lidke, K.A., Rieger, B., Jovin, T.M., Arndt-Jovin, D.J. J. Cell Biol. (2005) [Pubmed]
  7. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F., Bruchez, M.P. Nat. Biotechnol. (2003) [Pubmed]
  8. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Robel, I., Subramanian, V., Kuno, M., Kamat, P.V. J. Am. Chem. Soc. (2006) [Pubmed]
  9. Cadmium sulphide quantum dots in morphologically tunable triblock copolymer aggregates. Duxin, N., Liu, F., Vali, H., Eisenberg, A. J. Am. Chem. Soc. (2005) [Pubmed]
  10. Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots. Peter, L.M., Riley, D.J., Tull, E.J., Wijayantha, K.G. Chem. Commun. (Camb.) (2002) [Pubmed]
  11. Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+ - and Ni2+-doped ZnO nanocrystals. Schwartz, D.A., Norberg, N.S., Nguyen, Q.P., Parker, J.M., Gamelin, D.R. J. Am. Chem. Soc. (2003) [Pubmed]
  12. Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots. Chen, Q., Ma, Q., Wan, Y., Su, X., Lin, Z., Jin, Q. Luminescence : the journal of biological and chemical luminescence. (2005) [Pubmed]
  13. Enhanced collective electron transport by CdSe quantum dots confined in the poly(4-vinylpyridine) nanodomains of a poly(styrene-b-4-vinylpyridine) diblock copolymer thin film. Li, C.P., Wei, K.H., Huang, J.Y. Angew. Chem. Int. Ed. Engl. (2006) [Pubmed]
  14. Quantum dot-encoded beads. Gao, X., Nie, S. Methods Mol. Biol. (2005) [Pubmed]
  15. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. Bharali, D.J., Lucey, D.W., Jayakumar, H., Pudavar, H.E., Prasad, P.N. J. Am. Chem. Soc. (2005) [Pubmed]
  16. Investigation of red blood cell antigens with highly fluorescent and stable semiconductor quantum dots. de Farias, P.M., Santos, B.S., de Menezes, F.D., de Carvalho Ferreira, R., Barjas-Castro, M.L., Castro, V., Lima, P.R., Fontes, A., Cesar, C.L. Journal of biomedical optics. (2005) [Pubmed]
  17. Visualization and quantitation of peroxisomes using fluorescent nanocrystals: treatment of rats and monkeys with fibrates and detection in the liver. Colton, H.M., Falls, J.G., Ni, H., Kwanyuen, P., Creech, D., McNeil, E., Casey, W.M., Hamilton, G., Cariello, N.F. Toxicol. Sci. (2004) [Pubmed]
  18. Peptide-conjugated quantum dots: imaging the angiotensin type 1 receptor in living cells. Tomlinson, I.D., Mason, J.N., Blakely, R.D., Rosenthal, S.J. Methods Mol. Biol. (2005) [Pubmed]
  19. Targeting quantum dots to surface proteins in living cells with biotin ligase. Howarth, M., Takao, K., Hayashi, Y., Ting, A.Y. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  20. Spontaneous formation of nanoparticle vesicles from homopolymer polyelectrolytes. Cha, J.N., Birkedal, H., Euliss, L.E., Bartl, M.H., Wong, M.S., Deming, T.J., Stucky, G.D. J. Am. Chem. Soc. (2003) [Pubmed]
  21. Magnetic ordering in doped Cd(1-x)Co(x)Se diluted magnetic quantum dots. Hanif, K.M., Meulenberg, R.W., Strouse, G.F. J. Am. Chem. Soc. (2002) [Pubmed]
  22. Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. Park, N.M., Choi, C.J., Seong, T.Y., Park, S.J. Phys. Rev. Lett. (2001) [Pubmed]
  23. Electronic absorption spectroscopy of cobalt ions in diluted magnetic semiconductor quantum dots: demonstration of an isocrystalline core/shell synthetic method. Radovanovic, P.V., Gamelin, D.R. J. Am. Chem. Soc. (2001) [Pubmed]
  24. Analysis of CD36 expression on human monocytic cells and atherosclerotic tissue sections with quantum dots: investigation by flow cytometry and spectral imaging microscopy. Kahn, E., Vejux, A., Ménétrier, F., Maiza, C., Hammann, A., Sequeira-Le, G.A., Frouin, F., Tourneur, Y., Brau, F., Riedinger, J.M., Steinmetz, E., Todd-Pokropek, A., Lizard, G. Anal. Quant. Cytol. Histol. (2006) [Pubmed]
  25. Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Warshaw, D.M., Kennedy, G.G., Work, S.S., Krementsova, E.B., Beck, S., Trybus, K.M. Biophys. J. (2005) [Pubmed]
  26. SIRT1 top 40 hits: use of one-bead, one-compound acetyl-peptide libraries and quantum dots to probe deacetylase specificity. Garske, A.L., Denu, J.M. Biochemistry (2006) [Pubmed]
  27. Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Kaul, Z., Yaguchi, T., Kaul, S.C., Hirano, T., Wadhwa, R., Taira, K. Cell Res. (2003) [Pubmed]
  28. Interplay between the mesoscopic Stoner and Kondo effects in quantum dots. Murthy, G. Phys. Rev. Lett. (2005) [Pubmed]
  29. In-situ encapsulation of quantum dots into polymer microspheres. Sheng, W., Kim, S., Lee, J., Kim, S.W., Jensen, K., Bawendi, M.G. Langmuir : the ACS journal of surfaces and colloids. (2006) [Pubmed]
  30. Fluoroimmunoassays using antibody-conjugated quantum dots. Goldman, E.R., Mattoussi, H., Anderson, G.P., Medintz, I.L., Mauro, J.M. Methods Mol. Biol. (2005) [Pubmed]
  31. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Liang, R.Q., Li, W., Li, Y., Tan, C.Y., Li, J.X., Jin, Y.X., Ruan, K.C. Nucleic Acids Res. (2005) [Pubmed]
 
WikiGenes - Universities