The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

acetoin     3-hydroxybutan-2-one

Synonyms: Acethoin, acetoine, Dimethylketol, DL-Acetoin, b-oxobutane, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of acetylmethylcarbinol

 

High impact information on acetylmethylcarbinol

  • The growth inhibition of respiratory incompetent cox18Delta cells lacking GPD2 is reversed by the addition of acetoin, an alternative sink for NADH oxidation [6].
  • Added acetoin to aerobic tumor mitochondria was rapidly utilized in the presence of ATP at a rate of 65 nmol/min/mg of protein [7].
  • A search for decarboxylation products led to significant amounts of acetoin formed when Ehrlich tumor mitochondria were incubated with 1 mM [14C] pyruvate in the presence of ATP [7].
  • Microarray studies identified additional CidR-regulated operons including the IrgAB and alsSD encoding proteins involved in acetoin production [8].
  • The results of this study define the CidR regulon and demonstrate that the generation of acetoin is linked to the control of cell death and lysis in S. aureus [8].
 

Chemical compound and disease context of acetylmethylcarbinol

 

Biological context of acetylmethylcarbinol

  • Transcriptional lacZ fusions indicate that at low cell density AphA represses the expression of the acetoin genes up to 15-fold [2].
  • Transcripts for all but one of these open reading frames were detected in acetoin-fermenting and/or Fe(III)-reducing cells [14].
  • Furthermore, acoA was inactivated in B. subtilis by disruptive mutagenesis; these mutants were impaired to express PPi-dependent AoDH E1 activity to remove acetoin from the medium and to grow with acetoin as the carbon source [15].
  • Lactococcus lactis NZ9010 in which the las operon-encoded ldh gene was replaced with an erythromycin resistance gene cassette displayed a stable phenotype when grown under aerobic conditions, and its main end products of fermentation under these conditions were acetate and acetoin [16].
  • RS tests for hydrolysis of arginine, esculin, L-pyrrolidonyl-naphthylamide, production of acetyl methyl carbinol (Voges-Proskauer), and fermentation of arabinose, lactose, mannitol, raffinose, and sorbitol were satisfactory substitutes for conventional tests [17].
 

Associations of acetylmethylcarbinol with other chemical compounds

  • Citrate has been found as a product of acetoin utilization and was exported from the tumor mitochondria [7].
  • Exogenous application of racemic mixture of (RR) and (SS) isomers of 2,3-butanediol was found to trigger ISR and transgenic lines of B. subtilis that emitted reduced levels of 2,3-butanediol and acetoin conferred reduced Arabidopsis protection to pathogen infection compared with seedlings exposed to VOCs from wild-type bacterial lines [18].
  • Redox balancing is apparently still a problem in this strain, since anaerobic growth on xylose could be improved further by providing acetoin as an external NADH sink [19].
  • T. micdadei strains were strongly catalase positive and bromcresol purple spot test positive and produced acetoin but otherwise were usually inert in the other tests [20].
  • Anaerobic transcription of hmp, encoding a flavohemoglobin-like protein, and of the fermentative operons lctEP and alsSD, responsible for lactate and acetoin formation, was partially dependent on ywiD [21].
 

Gene context of acetylmethylcarbinol

  • Searches of several sequence databases reveal that human HD1, yeast HDA1, yeast RPD3 and other eukaryotic histone deacetylases share nine motifs with archaeal and eubacterial enzymes, including acetoin utilization protein (acuC) and acetylpolyamine amidohydrolase [22].
  • The ccpA gene was found to be allelic to alsA, previously identified as a regulator of acetoin biosynthesis, and may be involved in catabolite regulation of other systems as well [23].
  • E2 (dihydrolipoamide acetyltransferase) and E3 (dihydrolipoamide dehydrogenase) of the Clostridium magnum acetoin dehydrogenase enzyme system were copurified in a three-step procedure from acetoin-grown cells [24].
  • Hybridization with a DNA probe covering the genes for the E1 subunits of the Alcaligenes eutrophus acetoin cleaving system and nucleotide sequence analysis identified acoA (975 bp), acoB (1020 bp), apoC (1110 bp), acoX (1053 bp) and adh (1086 bp) in a 6.3-kb genomic region [25].
  • The amino acid sequences deduced from acoA, acoB, acoC, and acoL for E1 alpha (M(r), 34,854), E1 beta (M(r), 36,184), E2 (M(r), 47,281), and E3 (M(r), 49,394) exhibited striking similarities to the amino acid sequences of the components of the Alcaligenes eutrophus acetoin-cleaving system [26].
 

Analytical, diagnostic and therapeutic context of acetylmethylcarbinol

References

  1. Identification of genes involved in utilization of acetate and acetoin in Bacillus subtilis. Grundy, F.J., Waters, D.A., Takova, T.Y., Henkin, T.M. Mol. Microbiol. (1993) [Pubmed]
  2. Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Kovacikova, G., Lin, W., Skorupski, K. Mol. Microbiol. (2005) [Pubmed]
  3. Suppression of Staphylococcus aureus extracellular nuclease and alpha-toxin synthesis by acetylmethylcarbinol. Udou, T., Ichikawa, Y. Infect. Immun. (1978) [Pubmed]
  4. Biochemical and genetic analyses of acetoin catabolism in Alcaligenes eutrophus. Fründ, C., Priefert, H., Steinbüchel, A., Schlegel, H.G. J. Bacteriol. (1989) [Pubmed]
  5. Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes. Johansen, L., Bryn, K., Stormer, F.C. J. Bacteriol. (1975) [Pubmed]
  6. Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. Valadi, A., Granath, K., Gustafsson, L., Adler, L. J. Biol. Chem. (2004) [Pubmed]
  7. Formation and utilization of acetoin, an unusual product of pyruvate metabolism by Ehrlich and AS30-D tumor mitochondria. Baggetto, L.G., Lehninger, A.L. J. Biol. Chem. (1987) [Pubmed]
  8. Characterization of the Staphylococcus aureus CidR regulon: elucidation of a novel role for acetoin metabolism in cell death and lysis. Yang, S.J., Dunman, P.M., Projan, S.J., Bayles, K.W. Mol. Microbiol. (2006) [Pubmed]
  9. Plasmid-encoded diacetyl (acetoin) reductase in Leuconostoc pseudomesenteroides. Rattray, F.P., Myling-Petersen, D., Larsen, D., Nilsson, D. Appl. Environ. Microbiol. (2003) [Pubmed]
  10. Cloning of the Alcaligenes eutrophus alcohol dehydrogenase gene. Kuhn, M., Jendrossek, D., Fründ, C., Steinbüchel, A., Schlegel, H.G. J. Bacteriol. (1988) [Pubmed]
  11. Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis. Ali, N.O., Bignon, J., Rapoport, G., Debarbouille, M. J. Bacteriol. (2001) [Pubmed]
  12. Isolation and properties of Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 mutants producing diacetyl and acetoin from glucose. Boumerdassi, H., Monnet, C., Desmazeaud, M., Corrieu, G. Appl. Environ. Microbiol. (1997) [Pubmed]
  13. Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA. Grundy, F.J., Turinsky, A.J., Henkin, T.M. J. Bacteriol. (1994) [Pubmed]
  14. c-Type Cytochromes in Pelobacter carbinolicus. Haveman, S.A., Holmes, D.E., Ding, Y.H., Ward, J.E., Didonato, R.J., Lovley, D.R. Appl. Environ. Microbiol. (2006) [Pubmed]
  15. Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. Huang, M., Oppermann-Sanio, F.B., Steinbüchel, A. J. Bacteriol. (1999) [Pubmed]
  16. IS981-mediated adaptive evolution recovers lactate production by ldhB transcription activation in a lactate dehydrogenase-deficient strain of Lactococcus lactis. Bongers, R.S., Hoefnagel, M.H., Starrenburg, M.J., Siemerink, M.A., Arends, J.G., Hugenholtz, J., Kleerebezem, M. J. Bacteriol. (2003) [Pubmed]
  17. Comparison of physiologic tests used to identify non-beta-hemolytic aerococci, enterococci, and streptococci. Fertally, S.S., Facklam, R. J. Clin. Microbiol. (1987) [Pubmed]
  18. Bacterial volatiles induce systemic resistance in Arabidopsis. Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Kloepper, J.W., Paré, P.W. Plant Physiol. (2004) [Pubmed]
  19. Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Sonderegger, M., Jeppsson, M., Hahn-Hägerdal, B., Sauer, U. Appl. Environ. Microbiol. (2004) [Pubmed]
  20. Application of numerical systematics to the phenotypic differentiation of legionellae. Fox, K.F., Brown, A. J. Clin. Microbiol. (1989) [Pubmed]
  21. Modulation of anaerobic energy metabolism of Bacillus subtilis by arfM (ywiD). Marino, M., Ramos, H.C., Hoffmann, T., Glaser, P., Jahn, D. J. Bacteriol. (2001) [Pubmed]
  22. Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily. Leipe, D.D., Landsman, D. Nucleic Acids Res. (1997) [Pubmed]
  23. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Henkin, T.M., Grundy, F.J., Nicholson, W.L., Chambliss, G.H. Mol. Microbiol. (1991) [Pubmed]
  24. Biochemical and molecular characterization of the Clostridium magnum acetoin dehydrogenase enzyme system. Krüger, N., Oppermann, F.B., Lorenzl, H., Steinbüchel, A. J. Bacteriol. (1994) [Pubmed]
  25. Molecular characterization of the Pseudomonas putida 2,3-butanediol catabolic pathway. Huang, M., Oppermann, F.B., Steinbüchel, A. FEMS Microbiol. Lett. (1994) [Pubmed]
  26. Identification and molecular characterization of the aco genes encoding the Pelobacter carbinolicus acetoin dehydrogenase enzyme system. Oppermann, F.B., Steinbüchel, A. J. Bacteriol. (1994) [Pubmed]
  27. Cloning and expression of an alpha-acetolactate decarboxylase gene from Streptococcus lactis subsp. diacetylactis in Escherichia coli. Goelling, D., Stahl, U. Appl. Environ. Microbiol. (1988) [Pubmed]
  28. (R)-acetoin-female sex pheromone of the summer chafer Amphimallon solstitiale (L.). Tolasch, T., Sölter, S., Tóth, M., Ruther, J., Francke, W. J. Chem. Ecol. (2003) [Pubmed]
  29. Determination of 2,3-butanediol in high and low acetoin producers of Saccharomyces cerevisiae wine yeasts by automated multiple development (AMD). Romano, P., Suzzi, G., Brandolini, V., Menziani, E., Domizio, P. Lett. Appl. Microbiol. (1996) [Pubmed]
  30. Effects of ethanol, acetoin and 2,3-butanediol on EEG power spectra in conscious rats. Izumo, T., Ichiki, C., Saitou, K., Otsuka, M., Ohmori, S., Kamei, C. Biol. Pharm. Bull. (1998) [Pubmed]
 
WikiGenes - Universities