The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

ACMC-1BUD7     butane-2,3-diol

Synonyms: CCRIS 5501, B84904_ALDRICH, AG-D-50599, CHEMBL2312529, ACMC-209euy, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Dimethylene glycol


Psychiatry related information on Dimethylene glycol


High impact information on Dimethylene glycol


Chemical compound and disease context of Dimethylene glycol


Biological context of Dimethylene glycol

  • Anaerobic formation of 2,3-butanediol via acetoin involves acetolactate synthase and decarboxylase encoded by the alsSD operon [15].
  • When grown with the 2% casein acid hydrolysate supplement, the strain bearing vgb on plasmid pUC8:15 produced much more acetoin and 2,3-butanediol than the other strains after 26 hours in culture [16].
  • 0. Under conditions optimal for 2,3-butanediol synthesis, when aeration limited growth, the rate of biomass growth was more tightly related to the aeration rate in lactose medium than in glucose + galactose medium [17].
  • Average pig weights at 28 d of age for litters of sows fed butanediol prepartally were similar to those of sows fed starch, but were less (P less than .01) than those of sows fed lard throughout lactation [18].
  • Two constraints were imposed on this preclinical study: The rate of ester administration was limited to one half of the daily caloric requirement and to one half of the capacity of the liver to oxidize butanediol derived from ester hydrolysis [19].

Anatomical context of Dimethylene glycol


Associations of Dimethylene glycol with other chemical compounds


Gene context of Dimethylene glycol


Analytical, diagnostic and therapeutic context of Dimethylene glycol


  1. The metabolism of acetone in rat. Casazza, J.P., Felver, M.E., Veech, R.L. J. Biol. Chem. (1984) [Pubmed]
  2. Identification of biphenylcarboxylic acid derivatives as a novel class of bone resorption inhibitors. Van 't Hof, R.J., Idris, A.I., Ridge, S.A., Dunford, J., Greig, I.R., Ralston, S.H. J. Bone Miner. Res. (2004) [Pubmed]
  3. Motor performance in rats exposed to severe forebrain ischemia: effect of fasting and 1,3-butanediol. Combs, D.J., D'Alecy, L.G. Stroke (1987) [Pubmed]
  4. Butanediol induced ketosis increases tolerance to hypoxia in the mouse. Kirsch, J.R., D'Alecy, L.G., Mongroo, P.B. Stroke (1980) [Pubmed]
  5. Early appearance of 2,3-butanediol in acute myocardial infarction. A new marker for ischaemia? Heer, K.R., Stalder, H., Thoelen, H. Eur. Heart J. (1990) [Pubmed]
  6. Metabolism of 2,3-butanediol stereoisomers in the perfused rat liver. Montgomery, J.A., David, F., Garneau, M., Brunengraber, H. J. Biol. Chem. (1993) [Pubmed]
  7. Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene. González, E., Fernández, M.R., Larroy, C., Solà, L., Pericàs, M.A., Parés, X., Biosca, J.A. J. Biol. Chem. (2000) [Pubmed]
  8. Ischemic brain damage is not ameliorated by 1,3-butanediol in hyperglycemic rats. Lundgren, J., Smith, M.L., Mans, A.M., Siesjö, B.K. Stroke (1992) [Pubmed]
  9. 2,3-butanediol in experimental myocardial ischaemia in pigs. Heer, K.R., Althaus, U., Mettler, D., Schilt, W., Thoelen, H. Eur. Heart J. (1991) [Pubmed]
  10. Beneficial effect of 1,3-butanediol on cerebral energy metabolism and edema following brain embolization in rats. Gueldry, S., Marie, C., Rochette, L., Bralet, J. Stroke (1990) [Pubmed]
  11. Fermentation product butane 2,3-diol induces Ca(2+) transients in E. coli through activation of lanthanum-sensitive Ca(2+) channels. Campbell, A.K., Naseem, R., Wann, K., Holland, I.B., Matthews, S.B. Cell Calcium (2007) [Pubmed]
  12. The measurement of 2,3-butanediol and 1,2-propanediol in "flushing" and "non-flushing" Japanese. Casazza, J.P., Ishii, H., Veech, R.L. Alcohol (1985) [Pubmed]
  13. Plasma and liver metabolites and glucose kinetics as affected by prolonged ketonemia-glucosuria and fasting in steers. Lyle, R.R., deBoer, G., Harrison, R.O., Young, J.W. J. Dairy Sci. (1984) [Pubmed]
  14. A comprehensive study of environmental and human pathogenic Vibrio alginolyticus strains. Larsen, J.L., Farid, A.F., Dalsgaard, I. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene. 1. Abt. Originale A, Medizinische Mikrobiologie, Infektionskrankheiten und Parasitologie = International journal of microbiology and hygiene. A, Medical microbiology, infectiousdiseases, para... (1981) [Pubmed]
  15. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. Cruz Ramos, H., Hoffmann, T., Marino, M., Nedjari, H., Presecan-Siedel, E., Dreesen, O., Glaser, P., Jahn, D. J. Bacteriol. (2000) [Pubmed]
  16. Metabolic engineering of Serratia marcescens with the bacterial hemoglobin gene: alterations in fermentation pathways. Wei, M.L., Webster, D.A., Stark, B.C. Biotechnol. Bioeng. (1998) [Pubmed]
  17. Influence of sugar source (lactose, glucose, galactose) on 2,3-butanediol production by Klebsiella oxytoca NRRL-B199. Champluvier, B., Decallonne, J., Rouxhet, P.G. Arch. Microbiol. (1989) [Pubmed]
  18. Effects of dietary additions of 1,3-butanediol or lard for sows on survival of neonatal pigs. Stahly, T.S., Cromwell, G.L., Monegue, H.J. J. Anim. Sci. (1986) [Pubmed]
  19. Dog model of therapeutic ketosis induced by oral administration of R,S-1,3-butanediol diacetoacetate. Puchowicz, M.A., Smith, C.L., Bomont, C., Koshy, J., David, F., Brunengraber, H. J. Nutr. Biochem. (2000) [Pubmed]
  20. The acute in vitro effect of ethanol, its metabolites and other toxic alcohols on ion flux in isolated human leucocytes and erythrocytes. Green, R.J., Baron, D.N. Biochem. Pharmacol. (1986) [Pubmed]
  21. A simple GC method for determination of cryoprotector diols 1,4-butanediol or 2,3-butanediol in isolated rat hepatocytes. Almada, L., Guibert, E.E., Rodriguez, J.V. Cryo letters. (2002) [Pubmed]
  22. Urinary organic acid excretion by babies born before 33 weeks of gestation. Walker, V., Mills, G.A. Clin. Chem. (1989) [Pubmed]
  23. 2,3-Butanediol in plasma from an alcoholic mistakenly identified as ethylene glycol by gas-chromatographic analysis. Jones, A.W., Nilsson, L., Gladh, S.A., Karlsson, K., Beck-Friis, J. Clin. Chem. (1991) [Pubmed]
  24. The effects of acetaldehyde and 2,3-butanediol on rat embryos developing in vitro. Priscott, P.K. Biochem. Pharmacol. (1985) [Pubmed]
  25. Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes. Johansen, L., Bryn, K., Stormer, F.C. J. Bacteriol. (1975) [Pubmed]
  26. Metabolic engineering of Lactococcus lactis: influence of the overproduction of alpha-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions. Platteeuw, C., Hugenholtz, J., Starrenburg, M., van Alen-Boerrigter, I., de Vos, W.M. Appl. Environ. Microbiol. (1995) [Pubmed]
  27. Characterization and functional role of Saccharomyces cerevisiae 2,3-butanediol dehydrogenase. González, E., Fernández, M.R., Larroy, C., Parés, X., Biosca, J.A. Chem. Biol. Interact. (2001) [Pubmed]
  28. Independence of water and solute pathways in human RBCs. Macey, R.I., Karan, D.M. J. Membr. Biol. (1993) [Pubmed]
  29. Molecular characterization of the Pseudomonas putida 2,3-butanediol catabolic pathway. Huang, M., Oppermann, F.B., Steinbüchel, A. FEMS Microbiol. Lett. (1994) [Pubmed]
  30. Proton nuclear magnetic resonance detects leucine, 2,3-butanediol, and a prominent increase in the level of choline in the sera from patients chronically infected with schistosomiasis japonica. Nishina, M., Kato, K., Matsushita, K., Hayashi, M., Matsuda, H. Physiological chemistry and physics and medical NMR. (1997) [Pubmed]
  31. Atom-specific identification of adsorbed chiral molecules by photoemission. Kim, J.W., Carbone, M., Dil, J.H., Tallarida, M., Flammini, R., Casaletto, M.P., Horn, K., Piancastelli, M.N. Phys. Rev. Lett. (2005) [Pubmed]
  32. Butanediol production from cellulose and hemicellulose by Klebsiella pneumoniae grown in sequential coculture with Trichoderma harzianum. Yu, E.K., Deschatelets, L., Louis-Seize, G., Saddler, J.N. Appl. Environ. Microbiol. (1985) [Pubmed]
  33. Molecular cloning and characterization of a cDNA encoding a bovine butanediol dehydrogenase. Smania, A.M., Argaraña, C.E. Gene (1997) [Pubmed]
  34. High-performance liquid chromatographic method for the determination of tris(hydroxymethyl)aminomethane (tromethamine) in human plasma. Gumbhir, K., Mason, W.D. J. Chromatogr. (1992) [Pubmed]
  35. Effects of flow heterogeneity on the measurement of capillary exchange in the lung. Caruthers, S.D., Harris, T.R., Overholser, K.A., Pou, N.A., Parker, R.E. J. Appl. Physiol. (1995) [Pubmed]
WikiGenes - Universities