The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Betadrenol     1-(2-chloro-5-methyl- phenoxy)-3-(tert...

Synonyms: Betadran, Panimit, Looser, Bupranolol HCl, dl-KL 255, ...
This record was replaced with 2475.
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of BUPRANOLOL

  • Radiographic investigation of the proposita revealed that completion of stress fractures was necessary for healing; maturation of incomplete fractures resulted in stable Looser zones [1].
  • Osteomalacia was indicated by Looser zones in one patient and confirmed by histologic evidence in three patients [2].
  • We would suggest that bupranolol might be useful for prevention or treatment of thrombosis [3].
  • Twelve Looser zones and 17 healing bands of the ribs obtained from autopsy cases of Itai-itai disease were analyzed by bone histomorphometry [4].
  • Apart from a recent spontaneous fracture of the clavicle, Looser lines and pseudofractures were noted in a finger, fibula and malleolus [5].

High impact information on BUPRANOLOL

  • Epinephrine in the presence of the beta-adrenoceptor antagonist bupranolol (10(-6) M) elicited a positive inotropic effect through activation of alpha 1-adrenoceptors in rat and rabbit, whereas in dog ventricular myocardium, bupranolol abolished the positive inotropic effect of epinephrine [6].
  • Moreover, lipid production can be inhibited significantly by the (beta) AR antagonist bupranolol [7].
  • This effect was completely blocked after preincubation of the cells with 1 microM bupranolol, a nonspecific beta-adrenoreceptor blocker, or 100 nM SR59230a, a specific beta3-adrenoreceptor antagonist [8].
  • The involvement of beta(3)-AR in the negative inotropic effect was confirmed by the pretreatment with bupranolol, a non-selective beta-AR antagonist, which fully abolished the effects of SR 58611A [9].
  • CGP12177-induced lipolysis was antagonized in vitro by bupranolol, a beta-adrenergic antagonist potent on rodent beta3-adrenoceptors but not by nadolol, a beta1- and beta2-adrenoceptor antagonist [10].

Chemical compound and disease context of BUPRANOLOL


Biological context of BUPRANOLOL

  • The potencies of the bupranolol analogues to increase heart rate were correlated (r=0.91, P<0.05) with their affinities for beta(1)-adrenoceptor binding sites in rat brain cortex membranes labelled with [(3)H]CGP 12177 (in the presence of ICI 118,551) [13].
  • Effect of penetration enhancers on the release and skin permeation of bupranolol from reservoir-type transdermal delivery systems [14].
  • A reservoir-type transdermal delivery system (TDS) of bupranolol (BPL) was designed and evaluated for different formulation variables like gel reservoirs (made with anionic and nonionic polymers), rate controlling membranes and penetration enhancers on the drug release and in vitro skin permeation kinetics of the devices [14].
  • Effects of topically applied bupranolol on the intraocular pressure. Effects on the untreated eye [15].
  • The problem of tachyphylaxis is discussed in the treatment of glaucoma with bupranolol eye drops [16].

Anatomical context of BUPRANOLOL

  • In human fat cells, CGP 12,177-mediated lipolytic effect was antagonized by bupranolol and CGP 20,712A [17].
  • However, these conformational receptor changes are not accompanied by changes in receptor affinity, because the affinity estimates for K 105 and bupranolol did not differ for a variety of myocardial tissues (including ventricular beta-adrenoceptors labelled with 3H-(-)-propranolol] and trachea, not even for tracheal receptor subtypes [18].
  • In this study, bupranolol and SR 59230A were further evaluated for their potential alpha-adrenoceptor mediated effects (i.e., agonist and/or antagonist properties) in rat intralobar pulmonary artery and compared with BRL 37344 and CL 316243 [19].
  • An adenosine A1 receptor agonist R-N6-phenylisopropyladenosine (R-PIA) elicited a pronounced negative inotropic effect with the EC50 value of 0.69 mumol/l in the presence of a beta-adrenoceptor blocking agent bupranolol (0.3 mumol/l) in the isolated ferret papillary muscle [20].
  • Pharmacological analysis of atypical beta-adrenoceptors in the guinea pig gastric fundus using the beta(3)-adrenoceptor antagonist bupranolol [21].

Associations of BUPRANOLOL with other chemical compounds


Gene context of BUPRANOLOL

  • In contrast to the murine beta 3-adrenergic receptor, both bupranolol and (-)-propranolol were partial agonists of the bovine receptor [25].
  • However, its action on cyclic AMP production is inhibited by bupranolol, a beta1-3-adrenoreceptor antagonist, and S-(-)-cyanopindolol, a selective beta3-adrenoreceptor antagonist [22].
  • The KM value for bupranolol was lower than that reported for any other substrate of CYP2D6 [26].
  • The beta(1)-adrenoceptor antagonist CGP 20712 given in combination with the beta(2)-adrenoceptor antagonist ICI 118,551 (0.1 micro mol kg(-1) each) reduced the positive chronotropic action of the five bupranolol analogues without affecting that of CGP 12177 [13].
  • We furthermore determined the affinity of bupranolol to subclassify atypical beta/beta3-adrenoceptor in rat oesophageal muscularis mucosae, because it is rich in atypical beta/beta3-adrenoceptor [27].

Analytical, diagnostic and therapeutic context of BUPRANOLOL


  1. Adult hypophosphatasia. Clinical, laboratory, and genetic investigation of a large kindred with review of the literature. Whyte, M.P., Teitelbaum, S.L., Murphy, W.A., Bergfeld, M.A., Avioli, L.V. Medicine (Baltimore) (1979) [Pubmed]
  2. Metabolic bone disease in pseudohypoparathyroidism: radiologic features. Burnstein, M.I., Kottamasu, S.R., Pettifor, J.M., Sochett, E., Ellis, B.I., Frame, B. Radiology. (1985) [Pubmed]
  3. Effects of bupranolol, a new beta-blocker, on platelet functions of rabbit and human in vitro. Umetsu, T., Sanai, K., Kato, T. Thromb. Haemost. (1976) [Pubmed]
  4. Histomorphometric study of ribs with looser zones in Itai-itai disease. Yamashita, H., Kitagawa, M. Calcif. Tissue Int. (1996) [Pubmed]
  5. Osteomalacia in a patient with anorexia nervosa. Verbruggen, L.A., Bruyland, M., Shahabpour, M. J. Rheumatol. (1993) [Pubmed]
  6. Myocardial alpha 1-adrenoceptors mediate positive inotropic effect and changes in phosphatidylinositol metabolism. Species differences in receptor distribution and the intracellular coupling process in mammalian ventricular myocardium. Endoh, M., Hiramoto, T., Ishihata, A., Takanashi, M., Inui, J. Circ. Res. (1991) [Pubmed]
  7. Expression of human (beta)3-adrenergic receptor induces adipocyte-like features in CHO/K1 fibroblasts. Gros, J., Gerhardt, C.C., Strosberg, A.D. J. Cell. Sci. (1999) [Pubmed]
  8. Functional coupling of beta3-adrenoceptors and large conductance calcium-activated potassium channels in human uterine myocytes. Doheny, H.C., Lynch, C.M., Smith, T.J., Morrison, J.J. J. Clin. Endocrinol. Metab. (2005) [Pubmed]
  9. beta3-Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human beta3-adrenergic receptor. Tavernier, G., Toumaniantz, G., Erfanian, M., Heymann, M.F., Laurent, K., Langin, D., Gauthier, C. Cardiovasc. Res. (2003) [Pubmed]
  10. Expression of beta3-adrenoceptors with low lipolytic action in human subcutaneous white adipocytes. Tavernier, G., Barbe, P., Galitzky, J., Berlan, M., Caput, D., Lafontan, M., Langin, D. J. Lipid Res. (1996) [Pubmed]
  11. Betablocking drugs in essential hypertension: transdermal bupranolol compared with oral metoprolol. Jeck, T., Edmonds, D., Mengden, T., Schubert, M., Renz, I., Weisser, B., Vetter, W. International journal of clinical pharmacology research. (1992) [Pubmed]
  12. Antihypertensive effects of intra-cisternal beta-blocking agents in dogs with acute nerogenic hypertension. Montastruc, J.L., Montastruc, P. Archives internationales de pharmacodynamie et de thérapie. (1979) [Pubmed]
  13. Atypical cardiostimulant beta-adrenoceptor in the rat heart: stereoselective antagonism by bupranolol but lack of effect by some bupranolol analogues. Malinowska, B., Kieć-Kononowicz, K., Flau, K., Godlewski, G., Kozłowska, H., Kathmann, M., Schlicker, E. Br. J. Pharmacol. (2003) [Pubmed]
  14. Effect of penetration enhancers on the release and skin permeation of bupranolol from reservoir-type transdermal delivery systems. Babu, R.J., Pandit, J.K. International journal of pharmaceutics. (2005) [Pubmed]
  15. Effects of topically applied bupranolol on the intraocular pressure. Effects on the untreated eye. Sakimoto, G., Une, H., Ohba, N. Ophthalmologica (1979) [Pubmed]
  16. The intraocular pressure response of glaucomatous eyes to topically applied bupranolol. A pilot study. Krieglstein, G.K., Sold-Darseff, J., Leydhecker, W. Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie. Albrecht von Graefe's archive for clinical and experimental ophthalmology. (1977) [Pubmed]
  17. Lipolytic effects of conventional beta 3-adrenoceptor agonists and of CGP 12,177 in rat and human fat cells: preliminary pharmacological evidence for a putative beta 4-adrenoceptor. Galitzky, J., Langin, D., Verwaerde, P., Montastruc, J.L., Lafontan, M., Berlan, M. Br. J. Pharmacol. (1997) [Pubmed]
  18. A novel analysis of concentration-dependence of partial agonism Ring-demethylation of bupranolol results in a high affinity partial agonist (K 105) for myocardial and tracheal beta-adrenoceptors. Lemoine, H., Kaumann, A.J. Naunyn Schmiedebergs Arch. Pharmacol. (1982) [Pubmed]
  19. Comparison of the alpha-adrenoceptor-mediated effects of beta3-adrenoceptor ligands in rat pulmonary artery. Leblais, V., Pourageaud, F., Ivorra, M.D., Marthan, R., Muller, B. Naunyn Schmiedebergs Arch. Pharmacol. (2005) [Pubmed]
  20. Pronounced direct inhibitory action mediated by adenosine A1 receptor and pertussis toxin-sensitive G protein on the ferret ventricular contraction. Endoh, M., Takanashi, M., Norota, I., Kawabata, Y., Asano, T. Naunyn Schmiedebergs Arch. Pharmacol. (1993) [Pubmed]
  21. Pharmacological analysis of atypical beta-adrenoceptors in the guinea pig gastric fundus using the beta(3)-adrenoceptor antagonist bupranolol. Horinouchi, T., Koike, K. Pharmacology (1999) [Pubmed]
  22. Nebivolol induces calcium-independent signaling in endothelial cells by a possible beta-adrenergic pathway. Gosgnach, W., Boixel, C., Névo, N., Poiraud, T., Michel, J.B. J. Cardiovasc. Pharmacol. (2001) [Pubmed]
  23. Interactions of bupranolol with the polymorphic debrisoquine/sparteine monooxygenase (CYP2D6). Pressacco, J., Muller, R., Kalow, W. Eur. J. Clin. Pharmacol. (1993) [Pubmed]
  24. Characterization of beta-adrenoceptor subtype in bladder smooth muscle in cynomolgus monkey. Takeda, H., Yamazaki, Y., Akahane, M., Akahane, S., Miyata, H., Igawa, Y., Nishizawa, O. Jpn. J. Pharmacol. (2002) [Pubmed]
  25. Molecular cloning and pharmacological characterization of the bovine beta 3-adrenergic receptor. Piétri-Rouxel, F., Lenzen, G., Kapoor, A., Drumare, M.F., Archimbault, P., Strosberg, A.D., Manning, B.S. Eur. J. Biochem. (1995) [Pubmed]
  26. A sensitive method for determination of cytochrome P4502D6 activity in vitro using bupranolol as substrate. Appanna, G., Tang, B.K., Mller, R., Kalow, W. Drug Metab. Dispos. (1996) [Pubmed]
  27. Effect of bupranolol for BRL37344 and noradrenaline-induced relaxations mediating atypical beta/beta3-adrenoceptor in rat oesophageal muscularis mucosae. Horinouchi, T., Koshikawa, H., Koike, K. Gen. Pharmacol. (1999) [Pubmed]
  28. Determination of carboxybupranolol, the major metabolite of bupranolol, in human plasma by high-performance liquid chromatography. Walmsley, L.M., Brodie, R.R., Chasseaud, L.F. J. Chromatogr. (1984) [Pubmed]
  29. Influence of supersaturation on the pharmacodynamic effect of bupranolol after dermal administration using microemulsions as vehicle. Kemken, J., Ziegler, A., Müller, B.W. Pharm. Res. (1992) [Pubmed]
  30. Transdermal delivery of bupranolol: pharmacodynamics and beta-adrenoceptor occupancy. Wellstein, A., Küppers, H., Pitschner, H.F., Palm, D. Eur. J. Clin. Pharmacol. (1986) [Pubmed]
  31. Peripheral cardiovascular actions of SR 58611 A, a beta 3-adrenoceptor agonist, in the dog: lack of central effect. Montastruc, J.L., Verwaerde, P., Pelat, M., Galitzky, J., Langin, D., Lafontan, M., Berlan, M. Fundamental & clinical pharmacology. (1999) [Pubmed]
WikiGenes - Universities