The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Lipolysis

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Lipolysis

 

Psychiatry related information on Lipolysis

 

High impact information on Lipolysis

 

Chemical compound and disease context of Lipolysis

 

Biological context of Lipolysis

 

Anatomical context of Lipolysis

 

Associations of Lipolysis with chemical compounds

  • The effects of the agents on the synthesis of lipogenic enzymes are not dependent on lipolysis, since they take place to the same degree in cells not permitted to accumulate triglyceride [13].
  • The head group was reported to activate a high-affinity cyclic AMP-phosphodiesterase and pyruvate dehydrogenase, to inhibit catecholamine-stimulated lipolysis, and also to inhibit phospholipid methyltransferase and adenylate cyclase [29].
  • In contrast, isoprenaline, fenoterol and salbutamol are less potent as stimulants of lipolysis than as stimulants of atrial rate or tracheal relaxation [30].
  • Fifth, the contribution of adipose tissue lipolysis is reviewed with an emphasis on the various regulatory factors of the lipolytic pathways including catecholamines, insulin, adenosine, steroids, and other modulators [31].
  • These antibodies have the insulin-like activities of enhancing glucose oxidation and inhibiting epinephrine-induced lipolysis in rat adipocytes [32].
 

Gene context of Lipolysis

 

Analytical, diagnostic and therapeutic context of Lipolysis

References

  1. In vivo resistance of lipolysis to epinephrine. A new feature of childhood onset obesity. Bougnères, P., Stunff, C.L., Pecqueur, C., Pinglier, E., Adnot, P., Ricquier, D. J. Clin. Invest. (1997) [Pubmed]
  2. Human fat cell lipolysis is primarily regulated by inhibitory modulators acting through distinct mechanisms. Kather, H., Bieger, W., Michel, G., Aktories, K., Jakobs, K.H. J. Clin. Invest. (1985) [Pubmed]
  3. Effect of fatty acids on glucose production and utilization in man. Ferrannini, E., Barrett, E.J., Bevilacqua, S., DeFronzo, R.A. J. Clin. Invest. (1983) [Pubmed]
  4. Demonstration of a critical role for free fatty acids in mediating counterregulatory stimulation of gluconeogenesis and suppression of glucose utilization in humans. Fanelli, C., Calderone, S., Epifano, L., De Vincenzo, A., Modarelli, F., Pampanelli, S., Perriello, G., De Feo, P., Brunetti, P., Gerich, J.E. J. Clin. Invest. (1993) [Pubmed]
  5. Regulation of glucose utilization in adipose cells and muscle after long-term experimental hyperinsulinemia in rats. Wardzala, L.J., Hirshman, M., Pofcher, E., Horton, E.D., Mead, P.M., Cushman, S.W., Horton, E.S. J. Clin. Invest. (1985) [Pubmed]
  6. Increased insulin clearance in peroxisome proliferator-activated receptor gamma2 Pro12Ala. Tschritter, O., Fritsche, A., Stefan, N., Haap, M., Thamer, C., Bachmann, O., Dahl, D., Maerker, E., Teigeler, A., Machicao, F., Häring, H., Stumvoll, M. Metab. Clin. Exp. (2003) [Pubmed]
  7. Short-term fasting and lipolytic activity in rat adipocytes. Szkudelski, T., Lisiecka, M., Nowicka, E., Kowalewska, A., Nogowski, L., Szkudelska, K. Horm. Metab. Res. (2004) [Pubmed]
  8. Moderate alcohol consumption, glucose metabolism and lipolysis: the effect on adiponectin and tumor necrosis factor alpha. Avogaro, A., Sambataro, M., Marangoni, A., Pianta, A., Vettor, R., Pagano, C., Marescotti, M.C., Tiengo, A., Beltramello, G. J. Endocrinol. Invest. (2003) [Pubmed]
  9. Cidea-deficient mice have lean phenotype and are resistant to obesity. Zhou, Z., Yon Toh, S., Chen, Z., Guo, K., Ng, C.P., Ponniah, S., Lin, S.C., Hong, W., Li, P. Nat. Genet. (2003) [Pubmed]
  10. Absence of perilipin results in leanness and reverses obesity in Lepr(db/db) mice. Martinez-Botas, J., Anderson, J.B., Tessier, D., Lapillonne, A., Chang, B.H., Quast, M.J., Gorenstein, D., Chen, K.H., Chan, L. Nat. Genet. (2000) [Pubmed]
  11. Genetic variation in the beta 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. Clément, K., Vaisse, C., Manning, B.S., Basdevant, A., Guy-Grand, B., Ruiz, J., Silver, K.D., Shuldiner, A.R., Froguel, P., Strosberg, A.D. N. Engl. J. Med. (1995) [Pubmed]
  12. Glucose-induced exertional fatigue in muscle phosphofructokinase deficiency. Haller, R.G., Lewis, S.F. N. Engl. J. Med. (1991) [Pubmed]
  13. Cyclic AMP-mediated control of lipogenic enzyme synthesis during adipose differentiation of 3T3 cells. Spiegelman, B.M., Green, H. Cell (1981) [Pubmed]
  14. Catabolism of very low density lipoproteins in experimental nephrosis. Garber, D.W., Gottlieb, B.A., Marsh, J.B., Sparks, C.E. J. Clin. Invest. (1984) [Pubmed]
  15. Regulation of forearm lipolysis in different types of obesity. In vivo evidence for adipocyte heterogeneity. Jensen, M.D. J. Clin. Invest. (1991) [Pubmed]
  16. Phenylalanine kinetics in human adipose tissue. Coppack, S.W., Persson, M., Miles, J.M. J. Clin. Invest. (1996) [Pubmed]
  17. Mechanism of inhibition of a tumor lipid-mobilizing factor by eicosapentaenoic acid. Price, S.A., Tisdale, M.J. Cancer Res. (1998) [Pubmed]
  18. Xenobiotics released from fat during fasting produce estrogenic effects in ovariectomized mice. Bigsby, R.M., Caperell-Grant, A., Madhukar, B.V. Cancer Res. (1997) [Pubmed]
  19. Insulin action impaired by deficiency of the G-protein subunit G ialpha2. Moxham, C.M., Malbon, C.C. Nature (1996) [Pubmed]
  20. Inhibition of release of prostaglandins as an explanation of some of the actions of anti-inflammatory corticosteroids. Lewis, G.P., Piper, P.J. Nature (1975) [Pubmed]
  21. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Wajchenberg, B.L. Endocr. Rev. (2000) [Pubmed]
  22. A paired sibling analysis of the beta-3 adrenergic receptor and obesity in Mexican Americans. Mitchell, B.D., Blangero, J., Comuzzie, A.G., Almasy, L.A., Shuldiner, A.R., Silver, K., Stern, M.P., MacCluer, J.W., Hixson, J.E. J. Clin. Invest. (1998) [Pubmed]
  23. Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus. Nurjhan, N., Consoli, A., Gerich, J. J. Clin. Invest. (1992) [Pubmed]
  24. Adenylate cyclase of human fat cells. Expression of epinephrrine-sensitive activation revealed by 5'guanylyl-imidodiphosphate. Cooper, B., Partilla, J.S., Gregerman, R.I. J. Clin. Invest. (1975) [Pubmed]
  25. Rates of skeletal muscle and adipose tissue glycerol release in nonobese and obese subjects. Bolinder, J., Kerckhoffs, D.A., Moberg, E., Hagström-Toft, E., Arner, P. Diabetes (2000) [Pubmed]
  26. Insulin-mediated antilipolysis in permeabilized rat adipocytes. Mooney, R.A., Ebersohl, R.D., McDonald, J.M. J. Biol. Chem. (1984) [Pubmed]
  27. A unique defect in the regulation of visceral fat cell lipolysis in the polycystic ovary syndrome as an early link to insulin resistance. Ek, I., Arner, P., Rydén, M., Holm, C., Thörne, A., Hoffstedt, J., Wahrenberg, H. Diabetes (2002) [Pubmed]
  28. Physiological consequences of phasic insulin release in the normal animal. Cherrington, A.D., Sindelar, D., Edgerton, D., Steiner, K., McGuinness, O.P. Diabetes (2002) [Pubmed]
  29. Phospho-dephospho-control by insulin is mimicked by a phospho-oligosaccharide in adipocytes. Alemany, S., Mato, J.M., Strålfors, P. Nature (1987) [Pubmed]
  30. Atypical beta-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Arch, J.R., Ainsworth, A.T., Cawthorne, M.A., Piercy, V., Sennitt, M.V., Thody, V.E., Wilson, C., Wilson, S. Nature (1984) [Pubmed]
  31. Genetic and nongenetic determinants of regional fat distribution. Bouchard, C., Després, J.P., Mauriège, P. Endocr. Rev. (1993) [Pubmed]
  32. Antibodies to purified insulin receptor have insulin-like activity. Jacobs, S., Chang, K.J., Cuatrecasas, P. Science (1978) [Pubmed]
  33. Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. Wang, C.S., McConathy, W.J., Kloer, H.U., Alaupovic, P. J. Clin. Invest. (1985) [Pubmed]
  34. Neuropeptide Y and peptide YY inhibit lipolysis in human and dog fat cells through a pertussis toxin-sensitive G protein. Valet, P., Berlan, M., Beauville, M., Crampes, F., Montastruc, J.L., Lafontan, M. J. Clin. Invest. (1990) [Pubmed]
  35. Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Beisiegel, U., Weber, W., Bengtsson-Olivecrona, G. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  36. Protection against fatty liver but normal adipogenesis in mice lacking adipose differentiation-related protein. Chang, B.H., Li, L., Paul, A., Taniguchi, S., Nannegari, V., Heird, W.C., Chan, L. Mol. Cell. Biol. (2006) [Pubmed]
  37. Glucose turnover and adipose tissue lipolysis are insulin-resistant in healthy relatives of type 2 diabetes patients: is cellular insulin resistance a secondary phenomenon? Eriksson, J.W., Smith, U., Waagstein, F., Wysocki, M., Jansson, P.A. Diabetes (1999) [Pubmed]
  38. Insulin-mediated modifications of myocardial lipoprotein lipase and lipoprotein metabolism. O'Looney, P., Vander Maten, M., Vahouny, G.V. J. Biol. Chem. (1983) [Pubmed]
  39. Evidence for a major role of skeletal muscle lipolysis in the regulation of lipid oxidation during caloric restriction in vivo. Hagström-Toft, E., Thörne, A., Reynisdottir, S., Moberg, E., Rössner, S., Bolinder, J., Arner, P. Diabetes (2001) [Pubmed]
  40. Stereoselectivity of lipases. II. Stereoselective hydrolysis of triglycerides by gastric and pancreatic lipases. Rogalska, E., Ransac, S., Verger, R. J. Biol. Chem. (1990) [Pubmed]
  41. Adipocyte metabolism in adipocyte fatty acid binding protein knockout mice (aP2-/-) after short-term high-fat feeding: functional compensation by the keratinocyte [correction of keritinocyte] fatty acid binding protein. Shaughnessy, S., Smith, E.R., Kodukula, S., Storch, J., Fried, S.K. Diabetes (2000) [Pubmed]
 
WikiGenes - Universities