The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

SureCN6402242     5-[(2R)-2-[[(2S)-2-(3- chlorophenyl)-2...

Synonyms: LS-34664, AC1O3S63, CL 316243, C20H18ClNO7.2Na
This record was replaced with 5486546.
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of 5-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxy-ethyl]amino]propyl]benzo[1,3]dioxole-2,2-dicarboxylic acid


High impact information on 5-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxy-ethyl]amino]propyl]benzo[1,3]dioxole-2,2-dicarboxylic acid

  • Targeted disruption of mouse beta3-adrenoceptor was generated by homologous recombination, and validated by an acute in vivo study showing a complete lack of effect of the beta3-adrenoceptor agonist CL 316,243 on the metabolic rate of homozygous null (-/-) mice [6].
  • Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective beta3-adrenoceptor agonist in humans [7].
  • Treatment with CL 316,243 had no effect on heart rate or blood pressure and caused no cases of tremors [7].
  • Chronic treatment with CL-316,243 resulted in an increase in basal and insulin-stimulated [3H]2-deoxyglucose (2-DG) uptake by the retroperitoneal and epididymal white tissue and IBAT, but skeletal muscle 2-DG uptake under the same conditions was unaltered [2].
  • Treatment with CL 316,243 (1 mg/kg) for 12 or 24 h decreased leptin mRNA abundance and circulating levels to 20% of baseline in normal animals [3].

Chemical compound and disease context of 5-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxy-ethyl]amino]propyl]benzo[1,3]dioxole-2,2-dicarboxylic acid


Biological context of 5-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxy-ethyl]amino]propyl]benzo[1,3]dioxole-2,2-dicarboxylic acid


Anatomical context of 5-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxy-ethyl]amino]propyl]benzo[1,3]dioxole-2,2-dicarboxylic acid

  • Direct addition of T3 to pieces of adipose tissue enhanced the loss of leptin mRNA seen over 24 h in the presence of dexamethasone plus the beta3-adrenergic agonist Cl 316,243 [12].
  • The smooth muscle relaxation by CL 316243 was selectively antagonized by L 748337, a beta3-AR antagonist [13].
  • The objective of the present study was to evaluate the effects of a selective beta(3)-adrenoceptor agonist, (R, R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]propyl]-1, 3-benzodioxole-2,2-dicarboxylate (CL 316243), on the acutely obstructed ureter in anesthetized dogs [5].
  • Infusion of CL 316,243 (1 mg/kg/day) reduced abdominal fat, with a decrease in enlarged adipocyte size but no loss of white adipocytes [14].
  • CL 316,243 bound to membranes from rat beta-3-CHO cells with a Ki of 1 microM and stimulated cAMP production in beta-3-CHO cells with a Kact of 0.7 nM.(ABSTRACT TRUNCATED AT 250 WORDS)[15]

Associations of 5-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxy-ethyl]amino]propyl]benzo[1,3]dioxole-2,2-dicarboxylic acid with other chemical compounds

  • Selective beta 3-agonists (BRL 37344, CL 316243, and SR 58611) acted as partial agonists in marmoset but were inefficient in other primates, including humans. alpha 2-Adrenoceptor number ([3H]RX 8210002 binding) equalized (baboon) or exceeded (other primates) beta 1/beta 2-adrenoceptors ([3H]CGP 12177 binding) [16].
  • In basal conditions, TG beta(3) mice were characterized by an increase in heart rate and an acceleration of twitch parameters without modification of its amplitude. beta(3)-AR agonists (CL 316243, SR 58611A) decreased contractility at low concentrations (1-100 nM) [17].
  • 2. In rat fat cells, the rank order of potency of agonists was: CL 316,243 > isoprenaline > SR 58,611A > CGP 12,177 [10].
  • Treating MKR mice with CL-316243 significantly lowered serum and hepatic lipid levels, in part due to increased whole body triglyceride clearance and fatty acid oxidation in adipocytes [18].
  • 3. CGP 12177, cyanopindolol and CL 316243 increased temperature in the brown adipose tissue by maximally 1 degree C (pED50 values 7.4, 6.3 and 8.6, respectively) [19].

Gene context of 5-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxy-ethyl]amino]propyl]benzo[1,3]dioxole-2,2-dicarboxylic acid

  • To obtain direct evidence for the role of UCP1 in the anti-obesity effect of beta(3)-adrenergic stimulation, in the present study, UCP1-KO and wild-type (WT) mice were fed on cafeteria diets for 8 wk and then given a beta(3)-adrenergic agonist, CL-316,243 (CL), or saline for 2 wk [20].
  • Adiponectin mRNA expression was significantly higher in the CL-316,243-treatment group than in the control group in epididymal white adipose tissue but not in brown adipose tissue, soleus muscle or liver [21].
  • CL 316243 increased the expression of UCP2, UCP3 and PGC-1 in wild type mice only [22].
  • Adiponectin receptor 2 mRNA expression was significantly lower only in the liver of the CL-316,243-treatment group (versus the control group) [21].
  • In a second phase, mice received for an additional 2 wk a combination of COOH and the beta(3)-adrenergic receptor (beta(3)-AR) agonist CL-316243 to stimulate the adrenergic signaling pathway and assess whether COOH-induced UCP1 was physiologically functional [23].

Analytical, diagnostic and therapeutic context of 5-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2-hydroxy-ethyl]amino]propyl]benzo[1,3]dioxole-2,2-dicarboxylic acid


  1. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. Guerra, C., Koza, R.A., Yamashita, H., Walsh, K., Kozak, L.P. J. Clin. Invest. (1998) [Pubmed]
  2. CL-316,243, a beta3-specific adrenoceptor agonist, enhances insulin-stimulated glucose disposal in nonobese rats. de Souza, C.J., Hirshman, M.F., Horton, E.S. Diabetes (1997) [Pubmed]
  3. Activation of beta(3) adrenergic receptors suppresses leptin expression and mediates a leptin-independent inhibition of food intake in mice. Mantzoros, C.S., Qu, D., Frederich, R.C., Susulic, V.S., Lowell, B.B., Maratos-Flier, E., Flier, J.S. Diabetes (1996) [Pubmed]
  4. Efficacy of the beta3-adrenergic receptor agonist CL-316243 on experimental bladder hyperreflexia and detrusor instability in the rat. Woods, M., Carson, N., Norton, N.W., Sheldon, J.H., Argentieri, T.M. J. Urol. (2001) [Pubmed]
  5. Effects of beta-adrenergic stimulation on the acutely obstructed ureter in dogs. Murakami, M., Tomiyama, Y., Hayakawa, K., Akahane, M., Ajisawa, Y., Park, Y.C., Ohnishi, N., Sugiyama, T., Kurita, T. J. Pharmacol. Exp. Ther. (2000) [Pubmed]
  6. Targeted gene disruption reveals a leptin-independent role for the mouse beta3-adrenoceptor in the regulation of body composition. Revelli, J.P., Preitner, F., Samec, S., Muniesa, P., Kuehne, F., Boss, O., Vassalli, J.D., Dulloo, A., Seydoux, J., Giacobino, J.P., Huarte, J., Ody, C. J. Clin. Invest. (1997) [Pubmed]
  7. Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective beta3-adrenoceptor agonist in humans. Weyer, C., Tataranni, P.A., Snitker, S., Danforth, E., Ravussin, E. Diabetes (1998) [Pubmed]
  8. Anti-obesity effect of CL 316,243, a highly specific beta 3-adrenoceptor agonist, in mice with monosodium-L-glutamate-induced obesity. Yoshida, T., Sakane, N., Wakabayashi, Y., Umekawa, T., Kondo, M. Eur. J. Endocrinol. (1994) [Pubmed]
  9. Beta3-adrenergic receptors on white and brown adipocytes mediate beta3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. A study using transgenic and gene knockout mice. Grujic, D., Susulic, V.S., Harper, M.E., Himms-Hagen, J., Cunningham, B.A., Corkey, B.E., Lowell, B.B. J. Biol. Chem. (1997) [Pubmed]
  10. Lipolytic effects of conventional beta 3-adrenoceptor agonists and of CGP 12,177 in rat and human fat cells: preliminary pharmacological evidence for a putative beta 4-adrenoceptor. Galitzky, J., Langin, D., Verwaerde, P., Montastruc, J.L., Lafontan, M., Berlan, M. Br. J. Pharmacol. (1997) [Pubmed]
  11. White adipose tissue contributes to UCP1-independent thermogenesis. Granneman, J.G., Burnazi, M., Zhu, Z., Schwamb, L.A. Am. J. Physiol. Endocrinol. Metab. (2003) [Pubmed]
  12. Effect of tri-iodothyronine on leptin release and leptin mRNA accumulation in rat adipose tissue. Fain, J.N., Bahouth, S.W. Biochem. J. (1998) [Pubmed]
  13. Role of nitric oxide in beta3-adrenoceptor activation on basal tone of internal anal sphincter. Banwait, K.S., Rattan, S. Am. J. Physiol. Gastrointest. Liver Physiol. (2003) [Pubmed]
  14. Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a beta3-adrenoceptor agonist. Ghorbani, M., Claus, T.H., Himms-Hagen, J. Biochem. Pharmacol. (1997) [Pubmed]
  15. Beta-3 adrenoceptor selectivity of the dioxolane dicarboxylate phenethanolamines. Dolan, J.A., Muenkel, H.A., Burns, M.G., Pellegrino, S.M., Fraser, C.M., Pietri, F., Strosberg, A.D., Largis, E.E., Dutia, M.D., Bloom, J.D. J. Pharmacol. Exp. Ther. (1994) [Pubmed]
  16. Control of lipolysis in intra-abdominal fat cells of nonhuman primates: comparison with humans. Bousquet-Mélou, A., Galitzky, J., Lafontan, M., Berlan, M. J. Lipid Res. (1995) [Pubmed]
  17. beta3-Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human beta3-adrenergic receptor. Tavernier, G., Toumaniantz, G., Erfanian, M., Heymann, M.F., Laurent, K., Langin, D., Gauthier, C. Cardiovasc. Res. (2003) [Pubmed]
  18. Effect of adipocyte beta3-adrenergic receptor activation on the type 2 diabetic MKR mice. Kim, H., Pennisi, P.A., Gavrilova, O., Pack, S., Jou, W., Setser-Portas, J., East-Palmer, J., Tang, Y., Manganiello, V.C., Leroith, D. Am. J. Physiol. Endocrinol. Metab. (2006) [Pubmed]
  19. Further evidence for differences between cardiac atypical beta-adrenoceptors and brown adipose tissue beta3-adrenoceptors in the pithed rat. Malinowska, B., Schlicker, E. Br. J. Pharmacol. (1997) [Pubmed]
  20. Indispensable role of mitochondrial UCP1 for antiobesity effect of beta3-adrenergic stimulation. Inokuma, K., Okamatsu-Ogura, Y., Omachi, A., Matsushita, Y., Kimura, K., Yamashita, H., Saito, M. Am. J. Physiol. Endocrinol. Metab. (2006) [Pubmed]
  21. Adiponectin receptor 2 expression in liver and insulin resistance in db/db mice given a beta3-adrenoceptor agonist. Oana, F., Takeda, H., Matsuzawa, A., Akahane, S., Isaji, M., Akahane, M. Eur. J. Pharmacol. (2005) [Pubmed]
  22. Role of the beta(3)-adrenergic receptor and/or a putative beta(4)-adrenergic receptor on the expression of uncoupling proteins and peroxisome proliferator-activated receptor-gamma coactivator-1. Boss, O., Bachman, E., Vidal-Puig, A., Zhang, C.Y., Peroni, O., Lowell, B.B. Biochem. Biophys. Res. Commun. (1999) [Pubmed]
  23. Peroxisome proliferator-activated receptor gamma agonism increases the capacity for sympathetically mediated thermogenesis in lean and ob/ob mice. Sell, H., Berger, J.P., Samson, P., Castriota, G., Lalonde, J., Deshaies, Y., Richard, D. Endocrinology (2004) [Pubmed]
  24. A search for presynaptic beta3-adrenoceptors in the rat. Zelaszczyk, D., Zakrzeska, A., Kwolek, G., Malinowska, B., Schlicker, E. Fundamental & clinical pharmacology. (2005) [Pubmed]
  25. Effect of the beta(3)-adrenergic agonist Cl316,243 on functional differentiation of white and brown adipocytes in primary cell culture. Klaus, S., Seivert, A., Boeuf, S. Biochim. Biophys. Acta (2001) [Pubmed]
WikiGenes - Universities