The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Lopac-I-127     (2S,3S)-1-[(7-methyl-2,3- dihydro-1H-inden...

Synonyms: Tocris-0821, AC1NUNSO, CHEMBL198059, SureCN8027938, CHEBI:73289, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Tocris-0821


High impact information on Tocris-0821

  • Furthermore, ICI 118551 selective beta 2-adrenergic blockade offers portal blood flow and portal pressure reduction independent of reduction in cardiac output, which could be uniquely advantageous in situations where impairment of cardiac compensatory mechanisms might prove deleterious [6].
  • We document the molecular properties of the more efficacious ICI 118551; (i) it shows higher affinity for the inactive form of the receptor and (ii) it inhibits the spontaneous formation of a beta-adrenergic receptor kinase substrate by the receptor [7].
  • To examine the possibility that beta 2-blockade may contribute to the antihypertensive action of beta-blocker therapy, we studied the cardiovascular effects of compound ICI 118551, a beta 2-selective blocker [8].
  • Intracerebroventricular, but not intravenous, administration of the beta 2-adrenergic receptor antagonist ICI 118551 (30 micrograms) prevented the increased renal sympathetic nerve activity and antinatriuretic responses to air stress [9].
  • METHODS: Slide-mounted sections of human and rat inferior vagal ganglia were incubated with [125I]-pindolol in the absence or presence of propranolol (10 mumol/l) to define non-specific binding, atenolol (10 mumol/l) to inhibit binding to beta 1-adrenoceptors, or ICI 118551 (3 nmol/l) to inhibit binding to beta 2-adrenoceptors [10].

Chemical compound and disease context of Tocris-0821


Biological context of Tocris-0821

  • The reduced noradrenaline release in the presence of ICI 118551 was not accompanied by a reduction in blood pressure [11].
  • Furthermore, the beta 2-selective antagonist ICI 118551 was much less potent in the C6 cell line (IC50 = 0.2 +/- 0.05 microM; N = 3) than in the B50 cells [12].
  • These CGP-induced responses were antagonized by the beta(2)-selective antagonist ICI 118551 (apparent log K(D) values of -8.84+/-0.15 and -9.51+/-0.02 for the cyclic AMP and reporter gene responses respectively) [13].
  • In the presence of the beta(2)-adrenoceptor antagonist ICI-118551 (ICI, 10 microM), Iso caused an increase in [(14)C]phenylalanine incorporation, protein and RNA mass, cell volume, and cross-sectional area [14].
  • Antagonism of (-)-isoprenaline-stimulated cyclic AMP production by low concentrations of ICI 118551, yielded pseudo pA2 values in muscle and adipose tissue of 7.6 and 8.7 respectively, confirming that beta 2-adrenoceptors in these tissues are linked to the production of the second-messenger [15].

Anatomical context of Tocris-0821

  • This may be because ICI 118551 also blocked vasodilatory beta 2-adrenoceptors on vascular smooth muscle [11].
  • Soleus muscle membranes were found to host a population of beta 2-adrenoceptors, characterized by a high affinity for ICI 118551 (pK 9.1), but beta 1-adrenoceptors could not be detected in this preparation [16].
  • 3. Using ICI-118551, we determined the ratio of beta 1:beta 2-adrenoceptors in the trachea and heart to be approximately 29:71 and 56:44, respectively [17].
  • In the uterus, ICI 118551 (3 X 10(-9) M, 3 X 10(-8) M, 3 X 10(-7) M) blocked the pindolol effect with a pKB of 9.28 [18].
  • These effects were not modified by the incubation of myocytes with CGP-20712A (3 x 10(-7) M), a beta1-AR antagonist, but were abolished by pretreatment of myocytes with ICI-118551 (10(-7) M), a beta2-AR antagonist [19].

Associations of Tocris-0821 with other chemical compounds


Gene context of Tocris-0821


Analytical, diagnostic and therapeutic context of Tocris-0821


  1. Beta2-adrenergic receptor antagonist accelerates skin barrier recovery and reduces epidermal hyperplasia induced by barrier disruption. Denda, M., Fuziwara, S., Inoue, K. J. Invest. Dermatol. (2003) [Pubmed]
  2. Beta-adrenergic cardiac hypertrophy is mediated primarily by the beta(1)-subtype in the rat heart. Morisco, C., Zebrowski, D.C., Vatner, D.E., Vatner, S.F., Sadoshima, J. J. Mol. Cell. Cardiol. (2001) [Pubmed]
  3. The comparative effects of ICI 118551 and propranolol on essential tremor. Jefferson, D., Wharrad, H.J., Birmingham, A.T., Patrick, J.M. British journal of clinical pharmacology. (1987) [Pubmed]
  4. The effects of beta 1- and beta 2-adrenergic blockade and calcium channel blockade on postresuscitation electrolyte changes. Salerno, D.M., Murakami, M.M., Johnston, R.B. Am. Heart J. (1992) [Pubmed]
  5. Antiarrhythmic effects of selective beta 1- and beta 2- and nonselective beta-adrenoceptor blockade in normokalaemic and dietary-induced hypokalaemic rats. Winslow, E., Walker, G., Mason, R. J. Cardiovasc. Pharmacol. (1989) [Pubmed]
  6. Effect of selective blockade of beta 2-adrenergic receptors on portal and systemic hemodynamics in a portal hypertensive rat model. Kroeger, R.J., Groszmann, R.J. Gastroenterology (1985) [Pubmed]
  7. Negative antagonists promote an inactive conformation of the beta 2-adrenergic receptor. Samama, P., Pei, G., Costa, T., Cotecchia, S., Lefkowitz, R.J. Mol. Pharmacol. (1994) [Pubmed]
  8. Is beta 1-antagonism essential for the antihypertensive action of beta-blockers? Vincent, H.H., Man in 't Veld, A.J., Boomsma, F., Derkx, F.H., Schalekamp, M.A. Hypertension (1987) [Pubmed]
  9. Central adrenergic receptor control of renal function in conscious hypertensive rats. Koepke, J.P., DiBona, G.F. Hypertension (1986) [Pubmed]
  10. Visualization of beta-adrenoceptor binding sites on human inferior vagal ganglia and their axonal transport along the rat vagus nerve. Lawrence, A.J., Watkins, D., Jarrott, B. J. Hypertens. (1995) [Pubmed]
  11. Beta-adrenoceptor blockade and sympathetic neurotransmission in the pithed rat. Majewski, H., Murphy, T.V. J. Hypertens. (1989) [Pubmed]
  12. Expression of beta 2-adrenoceptors mediating cyclic AMP accumulation in astroglial and neuronal cell lines derived from the rat CNS. Ruck, A., Millns, P., Kendall, D.A., Hill, S.J. Biochem. Pharmacol. (1990) [Pubmed]
  13. Pharmacological characterization of CGP 12177 at the human beta(2)-adrenoceptor. Baker, J.G., Hall, I.P., Hill, S.J. Br. J. Pharmacol. (2002) [Pubmed]
  14. Hypertrophic effect of selective beta(1)-adrenoceptor stimulation on ventricular cardiomyocytes from adult rat. Schäfer, M., Frischkopf, K., Taimor, G., Piper, H.M., Schlüter, K.D. Am. J. Physiol., Cell Physiol. (2000) [Pubmed]
  15. Classical and atypical binding sites for beta-adrenoceptor ligands and activation of adenylyl cyclase in bovine skeletal muscle and adipose tissue membranes. Sillence, M.N., Matthews, M.L. Br. J. Pharmacol. (1994) [Pubmed]
  16. Ligand binding properties of putative beta 3-adrenoceptors compared in brown adipose tissue and in skeletal muscle membranes. Sillence, M.N., Moore, N.G., Pegg, G.G., Lindsay, D.B. Br. J. Pharmacol. (1993) [Pubmed]
  17. The affinity of betaxolol, a beta 1-adrenoceptor-selective blocking agent, for beta-adrenoceptors in the bovine trachea and heart. Satoh, E., Narimatsu, A., Hosohata, Y., Tsuchihashi, H., Nagatomo, T. Br. J. Pharmacol. (1993) [Pubmed]
  18. The beta 1- and beta 2-adrenoceptor stimulatory effects of alprenolol, oxprenolol and pindolol: a study in the isolated right atrium and uterus of the rat. Abrahamsson, T. Br. J. Pharmacol. (1986) [Pubmed]
  19. Enhanced cardiac L-type calcium current response to beta2-adrenergic stimulation in heart failure. Zhang, Z.S., Cheng, H.J., Ukai, T., Tachibana, H., Cheng, C.P. J. Pharmacol. Exp. Ther. (2001) [Pubmed]
  20. Ontogeny of insulin-induced hypoglycemia stimulation of adrenocorticotropin secretion in the rat: role of catecholamines. Grino, M., Oliver, C. Endocrinology (1992) [Pubmed]
  21. Comparison of HERG channel blocking effects of various beta-blockers-- implication for clinical strategy. Kawakami, K., Nagatomo, T., Abe, H., Kikuchi, K., Takemasa, H., Anson, B.D., Delisle, B.P., January, C.T., Nakashima, Y. Br. J. Pharmacol. (2006) [Pubmed]
  22. Identification and functional role of beta-adrenergic receptor subtypes in primate and rodent: in vivo versus isolated myocytes. Cui, Y., Shen, Y.T., Kalthof, B., Iwase, M., Sato, N., Uechi, M., Vatner, S.F., Vatner, D.E. J. Mol. Cell. Cardiol. (1996) [Pubmed]
  23. Beta adrenoceptors of human red blood cells, determination of their subtypes. Bree, F., Gault, I., d'Athis, P., Tillement, J.P. Biochem. Pharmacol. (1984) [Pubmed]
  24. Up-regulation of endothelial nitric oxide synthase through beta(2)-adrenergic receptor--the role of a beta-blocker with NO-releasing action. Jayachandran, M., Hayashi, T., Sumi, D., Thakur, N.K., Kano, H., Ignarro, L.J., Iguchi, A. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
  25. Beta 2-adrenoceptor activation by zinterol causes protein phosphorylation, contractile effects and relaxant effects through a cAMP pathway in human atrium. Kaumann, A.J., Sanders, L., Lynham, J.A., Bartel, S., Kuschel, M., Karczewski, P., Krause, E.G. Mol. Cell. Biochem. (1996) [Pubmed]
  26. Evidence for an atypical, or beta 3-adrenoceptor in ferret tracheal epithelium. Webber, S.E., Stock, M.J. Br. J. Pharmacol. (1992) [Pubmed]
  27. Biphasic effects of the beta-adrenoceptor agonist, BRL 37344, on glucose utilization in rat isolated skeletal muscle. Liu, Y.L., Cawthorne, M.A., Stock, M.J. Br. J. Pharmacol. (1996) [Pubmed]
  28. Epinephrine stimulates IL-6 expression in skeletal muscle and C2C12 myoblasts: role of c-Jun NH2-terminal kinase and histone deacetylase activity. Frost, R.A., Nystrom, G.J., Lang, C.H. Am. J. Physiol. Endocrinol. Metab. (2004) [Pubmed]
  29. Endurance exercise training attenuates cardiac beta2-adrenoceptor responsiveness and prevents ventricular fibrillation in animals susceptible to sudden death. Billman, G.E., Kukielka, M., Kelley, R., Moustafa-Bayoumi, M., Altschuld, R.A. Am. J. Physiol. Heart Circ. Physiol. (2006) [Pubmed]
  30. The role of beta-adrenergic receptors in the cutaneous water evaporation mechanism in the heat-acclimated pigeon (Columba livia). Ophir, E., Arieli, Y., Raber, P., Marder, J. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. (2000) [Pubmed]
  31. Synthesis and in vivo evaluation of [11C]ICI 118551 as a putative subtype selective beta2-adrenergic radioligand. Moresco, R.M., Matarrese, M., Soloviev, D., Simonelli, P., Rigamonti, M., Gobbo, C., Todde, S., Carpinelli, A., Kienle, M.G., Fazio, F. International journal of pharmaceutics. (2000) [Pubmed]
  32. beta-Adrenergic regulation of lipolysis and blood flow in human skeletal muscle in vivo. Hagström-Toft, E., Enoksson, S., Moberg, E., Bolinder, J., Arner, P. Am. J. Physiol. (1998) [Pubmed]
WikiGenes - Universities