The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AC1L9KYI     (2S)-3-hydroxy-2- phosphonooxy-propanoic acid

Synonyms: 4tim, 2PG, 2-phosphoglyceric acid, (2S)-3-hydroxy-2-phosphonooxypropanoic acid
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of 2-phosphoglyceric acid

 

High impact information on 2-phosphoglyceric acid

 

Chemical compound and disease context of 2-phosphoglyceric acid

 

Biological context of 2-phosphoglyceric acid

 

Anatomical context of 2-phosphoglyceric acid

 

Associations of 2-phosphoglyceric acid with other chemical compounds

 

Gene context of 2-phosphoglyceric acid

 

Analytical, diagnostic and therapeutic context of 2-phosphoglyceric acid

References

  1. A transport system for phosphoenolpyruvate, 2-phosphoglycerate, and 3-phosphoglycerate in Salmonella typhimurium. Saier, M.H., Wentzel, D.L., Feucht, B.U., Judice, J.J. J. Biol. Chem. (1975) [Pubmed]
  2. Role of metal ions in catalysis by enolase: an ordered kinetic mechanism for a single substrate enzyme. Poyner, R.R., Cleland, W.W., Reed, G.H. Biochemistry (2001) [Pubmed]
  3. Degradation of 2-phosphoglycerate by cytotoxin B of Clostridium difficile. Knoop, F., Martig, R., Owens, M. FEBS Lett. (1990) [Pubmed]
  4. Phosphoenolpyruvate and 2-phosphoglycerate: endogenous energy source(s) for sugar accumulation by starved cells of Streptococcus lactis. Thompson, J., Thomas, T.D. J. Bacteriol. (1977) [Pubmed]
  5. Cloning, sequencing, and expression of the Zymomonas mobilis phosphoglycerate mutase gene (pgm) in Escherichia coli. Yomano, L.P., Scopes, R.K., Ingram, L.O. J. Bacteriol. (1993) [Pubmed]
  6. Influence of transformation by Rous sarcoma virus on the amount, phosphorylation and enzyme kinetic properties of enolase. Eigenbrodt, E., Fister, P., Rübsamen, H., Friis, R.R. EMBO J. (1983) [Pubmed]
  7. ATP-dependent phosphorylation of serine-46 in the phosphocarrier protein HPr regulates lactose/H+ symport in Lactobacillus brevis. Ye, J.J., Reizer, J., Cui, X., Saier, M.H. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  8. Protein phosphorylation in pancreatic islets induced by 3-phosphoglycerate and 2-phosphoglycerate. Pek, S.B., Usami, M., Bilir, N., Fischer-Bovenkerk, C., Ueda, T. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  9. Abnormal red cell metabolism in patients with chronic uremia: Nature of the defect and its persistence despite adequate hemodialysis. Yawata, Y., Jacob, H.S. Blood (1975) [Pubmed]
  10. Structure of Plasmodium falciparum triose-phosphate isomerase-2-phosphoglycerate complex at 1.1-A resolution. Parthasarathy, S., Eaazhisai, K., Balaram, H., Balaram, P., Murthy, M.R. J. Biol. Chem. (2003) [Pubmed]
  11. Purification and characterization of phosphoglycerate mutase from methanol-grown Hyphomicrobium X and Pseudomonas AM1. Hill, B., Attwood, M.M. J. Gen. Microbiol. (1976) [Pubmed]
  12. Crystal structure of human B-type phosphoglycerate mutase bound with citrate. Wang, Y., Wei, Z., Liu, L., Cheng, Z., Lin, Y., Ji, F., Gong, W. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  13. Cofactor-independent phosphoglycerate mutase is an essential gene in procyclic form Trypanosoma brucei. Djikeng, A., Raverdy, S., Foster, J., Bartholomeu, D., Zhang, Y., El-Sayed, N.M., Carlow, C. Parasitol. Res. (2007) [Pubmed]
  14. Characterization of glycerate kinase (2-phosphoglycerate forming), a key enzyme of the nonphosphorylative Entner-Doudoroff pathway, from the thermoacidophilic euryarchaeon Picrophilus torridus. Reher, M., Bott, M., Schönheit, P. FEMS Microbiol. Lett. (2006) [Pubmed]
  15. Structural and kinetic alterations of constitutive conidial alkaline phosphatase from the osmotically-sensitive mutant of Neurospora crassa. Bogo, K.R., Masui, D.C., Leone, F.A., Jorge, J.A., Furriel, R.P. Folia Microbiol. (Praha) (2006) [Pubmed]
  16. Role of mitochondria in hepatic fructose metabolism. Grivell, A.R., Halls, H.J., Berry, M.N. Biochim. Biophys. Acta (1991) [Pubmed]
  17. Serum beta-enolase in acute myocardial infarction. Nomura, M., Kato, K., Nagasaka, A., Shiga, Y., Miyagi, Y., Fukui, R., Nakano, H., Abo, Y., Okajima, S., Nakai, A. British heart journal. (1987) [Pubmed]
  18. Reaction intermediate analogues for enolase. Anderson, V.E., Weiss, P.M., Cleland, W.W. Biochemistry (1984) [Pubmed]
  19. Phosphonate analogue substrates for enolase. Anderson, V.E., Cleland, W.W. Biochemistry (1990) [Pubmed]
  20. Evolution of enzymatic activities in the enolase superfamily: characterization of the (D)-glucarate/galactarate catabolic pathway in Escherichia coli. Hubbard, B.K., Koch, M., Palmer, D.R., Babbitt, P.C., Gerlt, J.A. Biochemistry (1998) [Pubmed]
  21. Glyceraldehyde dehydrogenases from the thermoacidophilic euryarchaeota Picrophilus torridus and Thermoplasma acidophilum, key enzymes of the non-phosphorylative Entner-Doudoroff pathway, constitute a novel enzyme family within the aldehyde dehydrogenase superfamily. Reher, M., Schönheit, P. FEBS Lett. (2006) [Pubmed]
  22. Multifunctional enzyme, bisphosphoglyceromutase/2,3-bisphosphoglycerate phosphatase/phosphoglyceromutase, from human erythrocytes. Evidence for a common active site. Ikura, K., Sasaki, R., Narita, H., Sugimoto, E., Chiba, H. Eur. J. Biochem. (1976) [Pubmed]
  23. Molecular evolution of enolase. Piast, M., Kustrzeba-Wójcicka, I., Matusiewicz, M., Banaś, T. Acta Biochim. Pol. (2005) [Pubmed]
  24. Inhibition of enolase: the crystal structures of enolase-Ca2(+)- 2-phosphoglycerate and enolase-Zn2(+)-phosphoglycolate complexes at 2.2-A resolution. Lebioda, L., Stec, B., Brewer, J.M., Tykarska, E. Biochemistry (1991) [Pubmed]
  25. Hybridization and isolation of human-rat beta gamma enolase. Shimizu, A., Kato, K. Biochim. Biophys. Acta (1984) [Pubmed]
  26. Molecular dynamics simulation of interactions in glycolytic enzymes. Hakobyan, D., Nazaryan, K. Biochemistry Mosc. (2006) [Pubmed]
  27. Effect of endogenous phosphoenolpyruvate potential on fluoride inhibition of glucose uptake by Streptococcus mutans. Germaine, G.R., Tellefson, L.M. Infect. Immun. (1986) [Pubmed]
  28. Regulation of 2-deoxyglucose phosphate accumulation in Lactococcus lactis vesicles by metabolite-activated, ATP-dependent phosphorylation of serine-46 in HPr of the phosphotransferase system. Ye, J.J., Reizer, J., Saier, M.H. Microbiology (Reading, Engl.) (1994) [Pubmed]
  29. Effects of thyroid hormone deficiency on the distribution of hepatic metabolites and control of pathways of carbohydrate metabolism in liver and adipose tissue of the rat. Baquer, N.Z., Cascales, M., McLean, P., Greenbaum, A.L. Eur. J. Biochem. (1976) [Pubmed]
 
WikiGenes - Universities