The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Chrysine     5,7-dihydroxy-2-phenyl- chromen-4-one

Synonyms: chrysin, Crysin, CHEMBL117, PubChem9839, AC1NQYPV, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Chrysine

 

Psychiatry related information on Chrysine

  • The rats receiving chrysin (1 mg/kg) and BZF (10 mg/kg) exhibited increased libido when they were allowed to interact with nonestrous female rats [6].
 

High impact information on Chrysine

  • 7,8-Benzoflavone and chrysin were potent competitive inhibitors and induced spectral changes in the aromatase cytochrome P-450 indicative of substrate displacement [7].
  • Both chrysin and the benzothiophenes inhibited human recombinant CKII enzymatic activity and showed competitive kinetics with respect to ATP, analogous to the classic CKII inhibitor 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) [8].
  • Most importantly, oral treatment of chrysin to transgenic mice that express the human UGT1 locus is unable to induce UGT1A1 expression in either the small intestine or liver [1].
  • Assessments of mitochondrial GSH levels mitochondrial membrane potential and cytochrome c release showed that the potentiation effects induced by 2',5'-DHC and chrysin involve mitochondrial dysfunction [2].
  • IKK/NF-kappaB pathway is also involved; however, kaempferol- and chrysin-mediated inhibitions are primarily executed through the attenuation of JNK activity, c-jun mRNA expression, and AP-1 activity [9].
 

Chemical compound and disease context of Chrysine

 

Biological context of Chrysine

 

Anatomical context of Chrysine

 

Associations of Chrysine with other chemical compounds

 

Gene context of Chrysine

 

Analytical, diagnostic and therapeutic context of Chrysine

References

  1. The role of chrysin and the ah receptor in induction of the human UGT1A1 gene in vitro and in transgenic UGT1 mice. Bonzo, J.A., Bélanger, A., Tukey, R.H. Hepatology (2007) [Pubmed]
  2. Flavonoid-induced glutathione depletion: potential implications for cancer treatment. Kachadourian, R., Day, B.J. Free Radic. Biol. Med. (2006) [Pubmed]
  3. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. De Clercq, E. Medicinal research reviews. (2000) [Pubmed]
  4. Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: involvement of p38 mitogen-activated protein kinase. Weng, M.S., Ho, Y.S., Lin, J.K. Biochem. Pharmacol. (2005) [Pubmed]
  5. Chrysin (5,7-di-OH-flavone), a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties. Medina, J.H., Paladini, A.C., Wolfman, C., Levi de Stein, M., Calvo, D., Diaz, L.E., Peña, C. Biochem. Pharmacol. (1990) [Pubmed]
  6. Beneficial effects of chrysin and benzoflavone on virility in 2-year-old male rats. Dhawan, K., Kumar, S., Sharma, A. Journal of medicinal food. (2002) [Pubmed]
  7. Inhibition of human estrogen synthetase (aromatase) by flavones. Kellis, J.T., Vickery, L.E. Science (1984) [Pubmed]
  8. Casein kinase II is a selective target of HIV-1 transcriptional inhibitors. Critchfield, J.W., Coligan, J.E., Folks, T.M., Butera, S.T. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  9. Flavonoids inhibit tumor necrosis factor-alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-kappaB: structure-activity relationships. Chen, C.C., Chow, M.P., Huang, W.C., Lin, Y.C., Chang, Y.J. Mol. Pharmacol. (2004) [Pubmed]
  10. Inhibition of HIV activation in latently infected cells by flavonoid compounds. Critchfield, J.W., Butera, S.T., Folks, T.M. AIDS Res. Hum. Retroviruses (1996) [Pubmed]
  11. Growth inhibitory effects of flavonoids in human thyroid cancer cell lines. Yin, F., Giuliano, A.E., Van Herle, A.J. Thyroid (1999) [Pubmed]
  12. Effects of the Flavonoid Chrysin on Nitrofurantoin Pharmacokinetics in Rats: Potential Involvement of ABCG2. Wang, X., Morris, M.E. Drug Metab. Dispos. (2007) [Pubmed]
  13. No evidence for the in vivo activity of aromatase-inhibiting flavonoids. Saarinen, N., Joshi, S.C., Ahotupa, M., Li, X., Ammälä, J., Mäkelä, S., Santti, R. J. Steroid Biochem. Mol. Biol. (2001) [Pubmed]
  14. Effects of flavonoids on cisplatin-induced apoptosis of HL-60 and L1210 leukemia cells. Cipák, L., Rauko, P., Miadoková, E., Cipáková, I., Novotný, L. Leuk. Res. (2003) [Pubmed]
  15. Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Mercer, L.D., Kelly, B.L., Horne, M.K., Beart, P.M. Biochem. Pharmacol. (2005) [Pubmed]
  16. Cancer chemopreventive properties of orally bioavailable flavonoids-Methylated versus unmethylated flavones. Walle, T., Ta, N., Kawamori, T., Wen, X., Tsuji, P.A., Walle, U.K. Biochem. Pharmacol. (2007) [Pubmed]
  17. Structure-related inhibition of human hepatic caffeine N3-demethylation by naturally occurring flavonoids. Lee, H., Yeom, H., Kim, Y.G., Yoon, C.N., Jin, C., Choi, J.S., Kim, B.R., Kim, D.H. Biochem. Pharmacol. (1998) [Pubmed]
  18. Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells. Harris, G.K., Qian, Y., Leonard, S.S., Sbarra, D.C., Shi, X. J. Nutr. (2006) [Pubmed]
  19. Differential UGT1A1 induction by chrysin in primary human hepatocytes and HepG2 Cells. Smith, C.M., Graham, R.A., Krol, W.L., Silver, I.S., Negishi, M., Wang, H., Lecluyse, E.L. J. Pharmacol. Exp. Ther. (2005) [Pubmed]
  20. Decreased pro-inflammatory cytokine production by LPS-stimulated PBMC upon in vitro incubation with the flavonoids apigenin, luteolin or chrysin, due to selective elimination of monocytes/macrophages. Hougee, S., Sanders, A., Faber, J., Graus, Y.M., van den Berg, W.B., Garssen, J., Smit, H.F., Hoijer, M.A. Biochem. Pharmacol. (2005) [Pubmed]
  21. Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2. Walle, U.K., Galijatovic, A., Walle, T. Biochem. Pharmacol. (1999) [Pubmed]
  22. Endothelial nitric oxide production stimulated by the bioflavonoid chrysin in rat isolated aorta. Villar, I.C., Vera, R., Galisteo, M., O'Valle, F., Romero, M., Zarzuelo, A., Duarte, J. Planta Med. (2005) [Pubmed]
  23. Baicalein protects rat cardiomyocytes from hypoxia/reoxygenation damage via a prooxidant mechanism. Woo, A.Y., Cheng, C.H., Waye, M.M. Cardiovasc. Res. (2005) [Pubmed]
  24. Role of NAD(P)H:quinone oxidoreductase in the progression of neuronal cell death in vitro and following cerebral ischaemia in vivo. Kapinya, K.J., Harms, U., Harms, C., Blei, K., Katchanov, J., Dirnagl, U., Hörtnagl, H. J. Neurochem. (2003) [Pubmed]
  25. Chrysin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression through the inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity. Woo, K.J., Jeong, Y.J., Inoue, H., Park, J.W., Kwon, T.K. FEBS Lett. (2005) [Pubmed]
  26. The induction of human UDP-glucuronosyltransferase 1A1 mediated through a distal enhancer module by flavonoids and xenobiotics. Sugatani, J., Yamakawa, K., Tonda, E., Nishitani, S., Yoshinari, K., Degawa, M., Abe, I., Noguchi, H., Miwa, M. Biochem. Pharmacol. (2004) [Pubmed]
  27. Chrysin inhibits lipopolysaccharide-induced angiogenesis via down-regulation of VEGF/VEGFR-2(KDR) and IL-6/IL-6R pathways. Lin, C.M., Chang, H., Li, S.Y., Wu, I.H., Chiu, J.H. Planta Med. (2006) [Pubmed]
  28. Aryl hydrocarbon receptor agonists directly activate estrogen receptor alpha in MCF-7 breast cancer cells. Liu, S., Abdelrahim, M., Khan, S., Ariazi, E., Jordan, V.C., Safe, S. Biol. Chem. (2006) [Pubmed]
  29. Cis-2', 3'-dihydrodiol production on flavone B-ring by biphenyl dioxygenase from Pseudomonas pseudoalcaligenes KF707 expressed in Escherichia coli. Kim, S.Y., Jung, J., Lim, Y., Ahn, J.H., Kim, S.I., Hur, H.G. Antonie Van Leeuwenhoek (2003) [Pubmed]
  30. Induction of UDP-glucuronosyltransferase UGT1A1 by the flavonoid chrysin in Caco-2 cells--potential role in carcinogen bioinactivation. Galijatovic, A., Otake, Y., Walle, U.K., Walle, T. Pharm. Res. (2001) [Pubmed]
  31. Flavonoids chrysin and benzoflavone, potent breast cancer resistance protein inhibitors, have no significant effect on topotecan pharmacokinetics in rats or mdr1a/1b (-/-) mice. Zhang, S., Wang, X., Sagawa, K., Morris, M.E. Drug Metab. Dispos. (2005) [Pubmed]
 
WikiGenes - Universities