The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

ABCG2  -  ATP-binding cassette, sub-family G (WHITE)...

Homo sapiens

Synonyms: ABC15, ABCP, ATP-binding cassette sub-family G member 2, BCRP, BCRP1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ABCG2

 

Psychiatry related information on ABCG2

 

High impact information on ABCG2

  • Nonsyndromic X-linked mental retardation (MRX) syndromes are clinically homogeneous but genetically heterogeneous disorders, whose genetic bases are largely unknown [10].
  • The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype [11].
  • Enforced expression of the ABCG2 cDNA directly conferred the SP phenotype to bone-marrow cells and caused a reduction in maturing progeny both in vitro and in transplantation-based assays [11].
  • Bcrp1 mRNA was expressed at high levels in primitive murine hematopoietic stem cells, and was sharply downregulated with differentiation [11].
  • Unlike Mrp1 and Pgp, ABCG2 is a half-transporter that must homodimerize to acquire transport activity [1].
 

Chemical compound and disease context of ABCG2

 

Biological context of ABCG2

 

Anatomical context of ABCG2

 

Associations of ABCG2 with chemical compounds

  • Previously, imatinib was shown to potently inhibit human breast cancer resistance protein (BCRP; ABCG2) [26].
  • 6-Prenylchrysin and tectochrysin therefore constitute new and promising inhibitors for the reversal of ABCG2-mediated drug transport [17].
  • The influence of FTC on mitoxantrone accumulation correlated with ABCG2 protein expression (r = 0.52; P < 0.001; n = 43) [4].
  • Sequencing the ABCG2 gene revealed no ABCG2 mutation at position 482 in patients who accumulated more rhodamine after FTC [4].
  • MCF-7/MitoR cells as well as MCF-7/ABCG2 cells demonstrated lower levels of Hoechst 33342 uptake compared with the parental MCF-7 cells [22].
  • By increasing intracellular photosensitizer levels in ABCG2+ tumors, imatinib mesylate or other ABCG2 transport inhibitors may enhance efficacy and selectivity of clinical PDT [27].
  • Neither the protein level nor the ubiquitinated state of the ABCG2 wild-type (WT) was affected by MG132 treatment [28].
  • A total of 17 healthy individuals participated in a clinical investigation to determine the effect of BCRP SNPs on sulfasalazine pharmacokinetics [29].
  • BCRP expression was observed in all RA synovial biopsy samples, both pretreatment and posttreatment, but not in control noninflammatory synovial tissue samples from orthopedic patients [30].
 

Physical interactions of ABCG2

  • ABCG2 consists of a nucleotide-binding domain (NBD) at the amino terminus and a transmembrane domain (TMD) at the carboxyl terminus and it is postulated to form a homodimer to perform its biological functions [31].
  • Aldehyde dehydrogenase and the multidrug-resistance transport protein (ABCG2), both of which have been used to identify and characterize hematopoietic stem cells, are expressed by SVF cells and ASCs at detectable levels [32].
  • The transmembrane ABC-type (ATP binding cassette) half-transporter ABCG2 (BCRP) serves as a marker protein for SP cell selection [33].
 

Enzymatic interactions of ABCG2

  • Immunohistochemical staining was performed to show the presence of the BCRP1/ABCG2 transporter and the phosphorylated form of EGFR in HNSCC tissue [34].
 

Co-localisations of ABCG2

 

Regulatory relationships of ABCG2

  • In normal testis, P-gp and BCRP were strongly expressed by myoid cells and luminal capillary endothelial wall and P-gp also by Leydig cells [36].
  • The induction of BCRP (mRNA and protein expression) by indolo[3,2-b]carbazole was inhibited in Caco-2 cells by co-incubation with the AhR antagonist PD98059 (2'-amino-3'-methoxyflavone) [37].
  • The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors [38].
  • We designed and synthesized small interfering RNA (siRNA) using T7 RNA polymerase and showed that siRNAs markedly down-regulated both exogenous and endogenous expression of BCRP [20].
  • When intestinal Bcrp1 was inhibited by FTC in Mrp2-deficient rats, total plasma concentrations of quercetin and its methylated metabolite isorhamnetin after 30 min of perfusion were more than twice that of controls (12.3 +/- 1.5 versus 5.6 +/- 1.3 muM; p < 0.01), whereas uptake of free quercetin from the intestinal lumen was not affected [39].
 

Other interactions of ABCG2

  • Unlike ABCG2 (breast cancer resistance protein, mitoxantrone-resistant protein), MRP1-mediated MX transport is dependent upon the presence of glutathione or its S-methyl analog [40].
  • MRP4 and BCRP were not detected in any of the tumors studied [41].
  • MRP2 showed the highest efflux clearance of EG among these efflux transporters, whereas BCRP-mediated clearance of ES was the highest in these double transfectants [42].
  • CONCLUSION: The results indicate that hydroxyurea does not interact with imatinib by inhibition of Pgp and BCRP mediated transport or by CYP3A4 mediated metabolism of imatinib [43].
  • While the mechanism of cellular retention of (anti)folates is mediated via (anti)folylpolyglutamylation, certain efflux transporters including MRP5 (ABCC5) and BCRP were shown to transport both mono-, di- as well as triglutamate derivatives of MTX and folic acid [44].
 

Analytical, diagnostic and therapeutic context of ABCG2

  • Western blot confirmed overexpression of ABCG2; neither P-glycoprotein nor MRP overexpression was detected [3].
  • Northern blot and PCR analysis revealed overexpression of the ABCG2 gene [3].
  • A variety of inhibitors for ABCG2 including GF120918 may prove useful for sensitizing cancer cells to chemotherapy or altering the distribution of orally administered drug substrates of ABCG2 [31].
  • Thus, the data indicate that siRNA- and shRNA-mediated RNAibased gene therapy may be applicable in preventing and reversing ABCG2-depending atypical MDR [45].
  • Expression of BCRP messenger RNA (mRNA) and amplification of the BCRP gene were analyzed by northern and Southern blot hybridization, respectively [12].

References

  1. Role of ABCG2/BCRP in biology and medicine. Krishnamurthy, P., Schuetz, J.D. Annu. Rev. Pharmacol. Toxicol. (2006) [Pubmed]
  2. Sterol transport by the human breast cancer resistance protein (ABCG2) expressed in Lactococcus lactis. Janvilisri, T., Venter, H., Shahi, S., Reuter, G., Balakrishnan, L., van Veen, H.W. J. Biol. Chem. (2003) [Pubmed]
  3. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells. Robey, R.W., Medina-Pérez, W.Y., Nishiyama, K., Lahusen, T., Miyake, K., Litman, T., Senderowicz, A.M., Ross, D.D., Bates, S.E. Clin. Cancer Res. (2001) [Pubmed]
  4. The role of breast cancer resistance protein in acute lymphoblastic leukemia. Plasschaert, S.L., van der Kolk, D.M., de Bont, E.S., Kamps, W.A., Morisaki, K., Bates, S.E., Scheffer, G.L., Scheper, R.J., Vellenga, E., de Vries, E.G. Clin. Cancer Res. (2003) [Pubmed]
  5. Plasma pharmacokinetics and tissue distribution of the breast cancer resistance protein (BCRP/ABCG2) inhibitor fumitremorgin C in SCID mice bearing T8 tumors. Garimella, T.S., Ross, D.D., Eiseman, J.L., Mondick, J.T., Joseph, E., Nakanishi, T., Bates, S.E., Bauer, K.S. Cancer Chemother. Pharmacol. (2005) [Pubmed]
  6. The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells. Xie, Y., Xu, K., Linn, D.E., Yang, X., Guo, Z., Shimelis, H., Nakanishi, T., Ross, D.D., Chen, H., Fazli, L., Gleave, M.E., Qiu, Y. J. Biol. Chem. (2008) [Pubmed]
  7. ABCG2 -- a transporter for all seasons. Sarkadi, B., Ozvegy-Laczka, C., Német, K., Váradi, A. FEBS Lett. (2004) [Pubmed]
  8. FACL4, encoding fatty acid-CoA ligase 4, is mutated in nonspecific X-linked mental retardation. Meloni, I., Muscettola, M., Raynaud, M., Longo, I., Bruttini, M., Moizard, M.P., Gomot, M., Chelly, J., des Portes, V., Fryns, J.P., Ropers, H.H., Magi, B., Bellan, C., Volpi, N., Yntema, H.G., Lewis, S.E., Schaffer, J.E., Renieri, A. Nat. Genet. (2002) [Pubmed]
  9. Mutations in the ZNF41 gene are associated with cognitive deficits: identification of a new candidate for X-linked mental retardation. Shoichet, S.A., Hoffmann, K., Menzel, C., Trautmann, U., Moser, B., Hoeltzenbein, M., Echenne, B., Partington, M., Van Bokhoven, H., Moraine, C., Fryns, J.P., Chelly, J., Rott, H.D., Ropers, H.H., Kalscheuer, V.M. Am. J. Hum. Genet. (2003) [Pubmed]
  10. PAK3 mutation in nonsyndromic X-linked mental retardation. Allen, K.M., Gleeson, J.G., Bagrodia, S., Partington, M.W., MacMillan, J.C., Cerione, R.A., Mulley, J.C., Walsh, C.A. Nat. Genet. (1998) [Pubmed]
  11. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Zhou, S., Schuetz, J.D., Bunting, K.D., Colapietro, A.M., Sampath, J., Morris, J.J., Lagutina, I., Grosveld, G.C., Osawa, M., Nakauchi, H., Sorrentino, B.P. Nat. Med. (2001) [Pubmed]
  12. Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. Ross, D.D., Yang, W., Abruzzo, L.V., Dalton, W.S., Schneider, E., Lage, H., Dietel, M., Greenberger, L., Cole, S.P., Doyle, L.A. J. Natl. Cancer Inst. (1999) [Pubmed]
  13. Multidrug resistance genes in infant acute lymphoblastic leukemia: Ara-C is not a substrate for the breast cancer resistance protein. Stam, R.W., van den Heuvel-Eibrink, M.M., den Boer, M.L., Ebus, M.E., Janka-Schaub, G.E., Allen, J.D., Pieters, R. Leukemia (2004) [Pubmed]
  14. Multidrug resistance proteins and folate supplementation: therapeutic implications for antifolates and other classes of drugs in cancer treatment. Hooijberg, J.H., de Vries, N.A., Kaspers, G.J., Pieters, R., Jansen, G., Peters, G.J. Cancer Chemother. Pharmacol. (2006) [Pubmed]
  15. Identification of 14-3-3sigma as a contributor to drug resistance in human breast cancer cells using functional proteomic analysis. Liu, Y., Liu, H., Han, B., Zhang, J.T. Cancer Res. (2006) [Pubmed]
  16. Pharmacogenetics of ABCG2 and Adverse Reactions to Gefitinib. Cusatis, G., Gregorc, V., Li, J., Spreafico, A., Ingersoll, R.G., Verweij, J., Ludovini, V., Villa, E., Hidalgo, M., Sparreboom, A., Baker, S.D. J. Natl. Cancer Inst. (2006) [Pubmed]
  17. Flavonoid structure-activity studies identify 6-prenylchrysin and tectochrysin as potent and specific inhibitors of breast cancer resistance protein ABCG2. Ahmed-Belkacem, A., Pozza, A., Muñoz-Martínez, F., Bates, S.E., Castanys, S., Gamarro, F., Di Pietro, A., Pérez-Victoria, J.M. Cancer Res. (2005) [Pubmed]
  18. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). Litman, T., Brangi, M., Hudson, E., Fetsch, P., Abati, A., Ross, D.D., Miyake, K., Resau, J.H., Bates, S.E. J. Cell. Sci. (2000) [Pubmed]
  19. Expression profiling of ABC transporters in a drug-resistant breast cancer cell line using AmpArray. Liu, Y., Peng, H., Zhang, J.T. Mol. Pharmacol. (2005) [Pubmed]
  20. Modulation of breast cancer resistance protein (BCRP/ABCG2) gene expression using RNA interference. Ee, P.L., He, X., Ross, D.D., Beck, W.T. Mol. Cancer Ther. (2004) [Pubmed]
  21. Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Burger, H., van Tol, H., Brok, M., Wiemer, E.A., de Bruijn, E.A., Guetens, G., de Boeck, G., Sparreboom, A., Verweij, J., Nooter, K. Cancer Biol. Ther. (2005) [Pubmed]
  22. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Kim, M., Turnquist, H., Jackson, J., Sgagias, M., Yan, Y., Gong, M., Dean, M., Sharp, J.G., Cowan, K. Clin. Cancer Res. (2002) [Pubmed]
  23. Distribution of breast cancer resistance protein (BCRP/ABCG2) mRNA expression along the human GI tract. Gutmann, H., Hruz, P., Zimmermann, C., Beglinger, C., Drewe, J. Biochem. Pharmacol. (2005) [Pubmed]
  24. Development of sulfasalazine resistance in human T cells induces expression of the multidrug resistance transporter ABCG2 (BCRP) and augmented production of TNFalpha. van der Heijden, J., de Jong, M.C., Dijkmans, B.A., Lems, W.F., Oerlemans, R., Kathmann, I., Schalkwijk, C.G., Scheffer, G.L., Scheper, R.J., Jansen, G. Ann. Rheum. Dis. (2004) [Pubmed]
  25. The expression and functional characterization of ABCG2 in brain endothelial cells and vessels. Zhang, W., Mojsilovic-Petrovic, J., Andrade, M.F., Zhang, H., Ball, M., Stanimirovic, D.B. FASEB J. (2003) [Pubmed]
  26. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Breedveld, P., Pluim, D., Cipriani, G., Wielinga, P., van Tellingen, O., Schinkel, A.H., Schellens, J.H. Cancer Res. (2005) [Pubmed]
  27. The tyrosine kinase inhibitor imatinib mesylate enhances the efficacy of photodynamic therapy by inhibiting ABCG2. Liu, W., Baer, M.R., Bowman, M.J., Pera, P., Zheng, X., Morgan, J., Pandey, R.A., Oseroff, A.R. Clin. Cancer Res. (2007) [Pubmed]
  28. Intramolecular disulfide bond is a critical check point determining degradative fates of ATP-binding cassette (ABC) transporter ABCG2 protein. Wakabayashi, K., Nakagawa, H., Tamura, A., Koshiba, S., Hoshijima, K., Komada, M., Ishikawa, T. J. Biol. Chem. (2007) [Pubmed]
  29. Breast cancer resistance protein (ABCG2) and drug disposition: intestinal expression, polymorphisms and sulfasalazine as an in vivo probe. Urquhart, B.L., Ware, J.A., Tirona, R.G., Ho, R.H., Leake, B.F., Schwarz, U.I., Zaher, H., Palandra, J., Gregor, J.C., Dresser, G.K., Kim, R.B. Pharmacogenet. Genomics (2008) [Pubmed]
  30. Involvement of breast cancer resistance protein expression on rheumatoid arthritis synovial tissue macrophages in resistance to methotrexate and leflunomide. van der Heijden, J.W., Oerlemans, R., Tak, P.P., Assaraf, Y.G., Kraan, M.C., Scheffer, G.L., van der Laken, C.J., Lems, W.F., Scheper, R.J., Dijkmans, B.A., Jansen, G. Arthritis Rheum. (2009) [Pubmed]
  31. Multidrug resistance in cancer chemotherapy and xenobiotic protection mediated by the half ATP-binding cassette transporter ABCG2. Han, B., Zhang, J.T. Current medicinal chemistry. Anti-cancer agents. (2004) [Pubmed]
  32. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Mitchell, J.B., McIntosh, K., Zvonic, S., Garrett, S., Floyd, Z.E., Kloster, A., Di Halvorsen, Y., Storms, R.W., Goh, B., Kilroy, G., Wu, X., Gimble, J.M. Stem Cells (2006) [Pubmed]
  33. The ATP-binding cassette transporter ABCG2 (BCRP), a marker for side population stem cells, is expressed in human heart. Meissner, K., Heydrich, B., Jedlitschky, G., Meyer Zu Schwabedissen, H., Mosyagin, I., Dazert, P., Eckel, L., Vogelgesang, S., Warzok, R.W., Böhm, M., Lehmann, C., Wendt, M., Cascorbi, I., Kroemer, H.K. J. Histochem. Cytochem. (2006) [Pubmed]
  34. EGFR regulates the side population in head and neck squamous cell carcinoma. Chen, J.S., Pardo, F.S., Wang-Rodriguez, J., Chu, T.S., Lopez, J.P., Aguilera, J., Altuna, X., Weisman, R.A., Ongkeko, W.M. Laryngoscope (2006) [Pubmed]
  35. Cytoplasmic confinement of breast cancer resistance protein (BCRP/ABCG2) as a novel mechanism of adaptation to short-term folate deprivation. Ifergan, I., Jansen, G., Assaraf, Y.G. Mol. Pharmacol. (2005) [Pubmed]
  36. The distribution of drug-efflux pumps, P-gp, BCRP, MRP1 and MRP2, in the normal blood-testis barrier and in primary testicular tumours. Bart, J., Hollema, H., Groen, H.J., de Vries, E.G., Hendrikse, N.H., Sleijfer, D.T., Wegman, T.D., Vaalburg, W., van der Graaf, W.T. Eur. J. Cancer (2004) [Pubmed]
  37. Identification of BCRP as transporter of benzo[a]pyrene conjugates metabolically formed in Caco-2 cells and its induction by Ah-receptor agonists. Ebert, B., Seidel, A., Lampen, A. Carcinogenesis (2005) [Pubmed]
  38. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Scharenberg, C.W., Harkey, M.A., Torok-Storb, B. Blood (2002) [Pubmed]
  39. Breast cancer resistance protein (Bcrp1/Abcg2) limits net intestinal uptake of quercetin in rats by facilitating apical efflux of glucuronides. Sesink, A.L., Arts, I.C., de Boer, V.C., Breedveld, P., Schellens, J.H., Hollman, P.C., Russel, F.G. Mol. Pharmacol. (2005) [Pubmed]
  40. Multidrug resistance protein 1 (MRP1, ABCC1) mediates resistance to mitoxantrone via glutathione-dependent drug efflux. Morrow, C.S., Peklak-Scott, C., Bishwokarma, B., Kute, T.E., Smitherman, P.K., Townsend, A.J. Mol. Pharmacol. (2006) [Pubmed]
  41. Immunohistochemical detection of multidrug-resistant protein expression in retinoblastoma treated by primary enucleation. Wilson, M.W., Fraga, C.H., Fuller, C.E., Rodriguez-Galindo, C., Mancini, J., Hagedorn, N., Leggas, M.L., Stewart, C.F. Invest. Ophthalmol. Vis. Sci. (2006) [Pubmed]
  42. Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. Matsushima, S., Maeda, K., Kondo, C., Hirano, M., Sasaki, M., Suzuki, H., Sugiyama, Y. J. Pharmacol. Exp. Ther. (2005) [Pubmed]
  43. The effect of hydroxyurea on P-glycoprotein/BCRP-mediated transport and CYP3A metabolism of imatinib mesylate. Oostendorp, R.L., Marchetti, S., Beijnen, J.H., Mazzanti, R., Schellens, J.H. Cancer Chemother. Pharmacol. (2007) [Pubmed]
  44. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Assaraf, Y.G. Drug Resist. Updat. (2006) [Pubmed]
  45. Complete Reversal of ABCG2-Depending Atypical Multidrug Resistance by RNA Interference in Human Carcinoma Cells. Priebsch, A., Rompe, F., Tönnies, H., Kowalski, P., Surowiak, P., Stege, A., Materna, V., Lage, H. Oligonucleotides. (2006) [Pubmed]
 
WikiGenes - Universities