The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Benazeprilat     (2S)-2-[[(4S)-6- (carboxymethyl)-5-oxo-6...

Synonyms: Benazeprilate, Benazeprilatum, AC1NUYTZ, SureCN159245, AG-H-49112, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cgs-14831

 

High impact information on Cgs-14831

 

Chemical compound and disease context of Cgs-14831

  • Valsartan or benazeprilat given continuously by subcutaneous osmotic minipump beginning at 10.5 weeks of age lowered blood pressure, as determined by radiotelemetry, prevented proteinuria, prolonged survival and decreased the severity of histopathological changes in the heart and kidney [9].
  • While thiol containing ACEI, captopril, significantly inhibited the ATP depletion and pH fall produced by ischemia, non-thiol compound, CGS 14831, did not have any influence on the ATP degradation and pH fall during ischemia [10].
 

Biological context of Cgs-14831

 

Anatomical context of Cgs-14831

 

Associations of Cgs-14831 with other chemical compounds

 

Gene context of Cgs-14831

 

Analytical, diagnostic and therapeutic context of Cgs-14831

References

  1. Effects of benazeprilat on left ventricular systolic and diastolic function and neurohumoral status in patients with ischemic heart disease. Rousseau, M.F., Gurné, O., van Eyll, C., Benedict, C.R., Pouleur, H. Circulation (1990) [Pubmed]
  2. Pharmacokinetics of a new angiotensin-converting enzyme inhibitor, benazepril hydrochloride, in special populations. Kaiser, G., Ackermann, R., Sioufi, A. Am. Heart J. (1989) [Pubmed]
  3. Pharmacokinetics of the active metabolite of benazepril, benazeprilat, and inhibition of plasma angiotensin-converting enzyme activity after single and repeated administrations to dogs. King, J.N., Mauron, C., Kaiser, G. Am. J. Vet. Res. (1995) [Pubmed]
  4. Age and hypertension differently affect coronary contractions to endothelin-1, serotonin, and angiotensins. Tschudi, M.R., Lüscher, T.F. Circulation (1995) [Pubmed]
  5. Antihypertensive therapy augments endothelium-dependent relaxations in coronary arteries of spontaneously hypertensive rats. Tschudi, M.R., Criscione, L., Novosel, D., Pfeiffer, K., Lüscher, T.F. Circulation (1994) [Pubmed]
  6. Angiotensin-converting enzyme inhibitor versus angiotensin II, AT1 receptor antagonist. Effects on smooth muscle cell migration and proliferation after balloon catheter injury. Prescott, M.F., Webb, R.L., Reidy, M.A. Am. J. Pathol. (1991) [Pubmed]
  7. Prolonged angiotensin II antagonism in spontaneously hypertensive rats. Hemodynamic and biochemical consequences. Bunkenburg, B., Schnell, C., Baum, H.P., Cumin, F., Wood, J.M. Hypertension (1991) [Pubmed]
  8. Synergistic effects of combined converting enzyme inhibition and angiotensin II antagonism on blood pressure in conscious telemetered spontaneously hypertensive rats. Webb, R.L., Navarrete, A.E., Davis, S., de Gasparo, M. J. Hypertens. (1998) [Pubmed]
  9. Protective effects of valsartan and benazeprilat in salt-loaded stroke-prone spontaneously hypertensive rats. Webb, R.L., Barclay, B.W., Navarrete, A.E., Wosu, N.J., Sahota, P. Clin. Exp. Hypertens. (1998) [Pubmed]
  10. Effects of two angiotensin converting enzyme inhibitors on the mechanical function and energy metabolism of isolated rat hearts. A nuclear magnetic resonance study with an active form of benazeprilat and captopril. Tanaka, M., Ishibashi, T., Imai, S. Arzneimittel-Forschung. (1990) [Pubmed]
  11. Steady-state pharmacokinetics and pharmacodynamics of benazeprilat in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. LeRoy, S., Berner, B. Pharm. Res. (1991) [Pubmed]
  12. Development and validation of a liquid chromatographic/electrospray ionization mass spectrometric method for the determination of benazepril, benazeprilat and hydrochlorothiazide in human plasma. Vonaparti, A., Kazanis, M., Panderi, I. Journal of mass spectrometry : JMS. (2006) [Pubmed]
  13. Effects of renal impairment on the disposition of orally administered enalapril, benazepril, and their active metabolites. Lefebvre, H.P., Laroute, V., Concordet, D., Toutain, P.L. J. Vet. Intern. Med. (1999) [Pubmed]
  14. Hemodynamic effects of benazeprilat in the anesthetized dog with acute left ventricular failure. Nakazawa, M., Sawanobori, T., Iwasaki, K., Imai, S. Jpn. J. Pharmacol. (1991) [Pubmed]
  15. Benazeprilat disposition and effect in dogs revisited with a pharmacokinetic/pharmacodynamic modeling approach. Toutain, P.L., Lefebvre, H.P., King, J.N. J. Pharmacol. Exp. Ther. (2000) [Pubmed]
  16. Amlodipine and benazeprilat differently affect the responses to endothelin-1 and bradykinin in porcine ciliary arteries: effects of a low and high dose combination. Lang, M.G., Zhu, P., Meyer, P., Noll, G., Haefliger, I.O., Flammer, J., Lüscher, T.F. Curr. Eye Res. (1997) [Pubmed]
  17. The disposition of [14C]-labelled benazepril HCl in normal adult volunteers after single and repeated oral dose. Waldmeier, F., Kaiser, G., Ackermann, R., Faigle, J.W., Wagner, J., Barner, A., Lasseter, K.C. Xenobiotica (1991) [Pubmed]
  18. Influence of angiotensin II, alpha- and beta-adrenoceptors on peripheral noradrenergic neurotransmission in canine gracilis muscle in vivo. Schwieler, J.H., Kahan, T., Nussberger, J., Johansson, M.C., Hjemdahl, P. Acta Physiol. Scand. (1992) [Pubmed]
  19. Effects of metalloprotease inhibitors on the conversion of proendothelin-1 to endothelin-1. Trapani, A.J., Balwierczak, J.L., Lappe, R.W., Stanton, J.L., Graybill, S.C., Hopkins, M.F., Savage, P., Sperbeck, D.M., Jeng, A.Y. Biochem. Mol. Biol. Int. (1993) [Pubmed]
  20. Comparison of chronic inhibition of renin and converting enzyme in the marmoset. Wood, J.M., Jobber, R.A., Baum, H.P., Hofbauer, K.G. Clinical and experimental hypertension. Part A, Theory and practice. (1987) [Pubmed]
  21. Modulation of sympathetic coronary vasoconstriction by cardiac renin-angiotensin system in human coronary heart disease. Saino, A., Pomidossi, G., Perondi, R., Morganti, A., Turolo, L., Mancia, G. Circulation (2000) [Pubmed]
  22. Site-differential gastrointestinal absorption of benazepril hydrochloride in healthy volunteers. Chan, K.K., Buch, A., Glazer, R.D., John, V.A., Barr, W.H. Pharm. Res. (1994) [Pubmed]
  23. Influence of the renin-angiotensin system on sympathetic neurotransmission in canine skeletal muscle in vivo. Schwieler, J.H., Kahan, T., Nussberger, J., Hjemdahl, P. Naunyn Schmiedebergs Arch. Pharmacol. (1991) [Pubmed]
  24. The pharmacokinetics of benazepril relative to other ACE inhibitors. Gengo, F.M., Brady, E. Clinical cardiology. (1991) [Pubmed]
  25. Pharmacokinetics and pharmacodynamics of benazepril hydrochloride in patients with major proteinuria. Schweizer, C., Kaiser, G., Dieterle, W., Mann, J. Eur. J. Clin. Pharmacol. (1993) [Pubmed]
 
WikiGenes - Universities