The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

benazapril     2-[(4S)-4-[[(1S)-1- ethoxycarbonyl-3-phenyl...

Synonyms: benazepril, benzazepril, Benazeprilum, CHEMBL838, AC1NSFPL, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of benazepril

 

High impact information on benazepril

 

Chemical compound and disease context of benazepril

 

Biological context of benazepril

 

Anatomical context of benazepril

 

Associations of benazepril with other chemical compounds

  • In seven angiotensin clamped rats (AC rats), renin-angiotensin II system activity was clamped at normal levels throughout the study by continuous intravenous infusion of the angiotensin-converting enzyme inhibitor benazepril at 5 mg/kg per day (which decreased MAP by 18+/-2 mm Hg) together with intravenous Ang II at 5 ng/kg per minute [24].
  • The reaction of the renin-angiotensin system to acute angiotensin converting enzyme inhibition was investigated in a single-blind, crossover study in nine normal volunteers receiving two out of three regimens in random order: the new converting enzyme inhibitor benazepril (20 mg once or 5 mg four times at 6-hour intervals) or enalapril (20 mg) [25].
  • Amlodipine improved, benazepril impaired and the combination of both agents maintained left ventricular pumping ability when pressure was increased abruptly to pretreatment levels in WKY rats [26].
  • Filtration fraction and renal vascular resistances (RVR) decreased more with combined (-14.7%,-23.7%) or benazepril (-12.4%, -20.5%) than with valsartan (-2.7%, -12.5%, P < 0.05 vs. both) [17].
  • This double-blind study compared the efficacy and safety of high-dose combinations of amlodipine besylate (5 mg and 10 mg) and benazepril hydrochloride (40 mg) to benazepril hydrochloride (40 mg) alone in hypertensive patients not adequately controlled with benazepril hydrochloride (40 mg) monotherapy [27].
 

Gene context of benazepril

 

Analytical, diagnostic and therapeutic context of benazepril

References

  1. Effect of benazepril in chronic renal insufficiency. Apperloo, A.J., Rensma, P.L. N. Engl. J. Med. (1996) [Pubmed]
  2. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. Maschio, G., Alberti, D., Janin, G., Locatelli, F., Mann, J.F., Motolese, M., Ponticelli, C., Ritz, E., Zucchelli, P. N. Engl. J. Med. (1996) [Pubmed]
  3. Additive effect of ACE inhibition and angiotensin II receptor blockade in type I diabetic patients with diabetic nephropathy. Jacobsen, P., Andersen, S., Jensen, B.R., Parving, H.H. J. Am. Soc. Nephrol. (2003) [Pubmed]
  4. Effects of benazepril and nicardipine on microalbuminuria in normotensive and hypertensive patients with diabetes. De Cesaris, R., Ranieri, G., Andriani, A., Lamontanara, G., Cavallo, A., Bonfantino, M.V., Bertocchi, F. Clin. Pharmacol. Ther. (1996) [Pubmed]
  5. Effect of benazepril on myocardial ischaemia in patients with chronic stable angina pectoris. Tzivoni, D., Gottlieb, S., Khurmi, N.S., Medina, A., Gavish, A., Stern, S. Eur. Heart J. (1992) [Pubmed]
  6. Antihypertensive therapy augments endothelium-dependent relaxations in coronary arteries of spontaneously hypertensive rats. Tschudi, M.R., Criscione, L., Novosel, D., Pfeiffer, K., Lüscher, T.F. Circulation (1994) [Pubmed]
  7. Associations between CYP11B2 gene polymorphisms and the response to angiotensin-converting enzyme inhibitors. Yu, H.M., Lin, S.G., Liu, G.Z., Zhang, Y.Q., Ma, W.J., Deng, C.Y. Clin. Pharmacol. Ther. (2006) [Pubmed]
  8. Relationship between endothelial function and fibrinolysis in early hypertension. Tomiyama, H., Kimura, Y., Mitsuhashi, H., Kinouchi, T., Yoshida, H., Kushiro, T., Doba, N. Hypertension (1998) [Pubmed]
  9. The effects of benazepril, a new angiotensin-converting enzyme inhibitor, in mild to moderate essential hypertension: a multicenter study. Moser, M., Abraham, P.A., Bennett, W.M., Brachfeld, N., Goodman, R.P., McKenney, J.M., Hollifield, J.W., Kirkendall, W.M., Lasseter, K.C., Leon, A.S. Clin. Pharmacol. Ther. (1991) [Pubmed]
  10. New insights on effect of kidney insufficiency on disposition of angiotensin-converting enzyme inhibitors: case of enalapril and benazepril in dogs. Toutain, P.L., Lefebvre, H.P., Laroute, V. J. Pharmacol. Exp. Ther. (2000) [Pubmed]
  11. Initial angiotensin-converting enzyme inhibitor/calcium channel blocker combination therapy achieves superior blood pressure control compared with calcium channel blocker monotherapy in patients with stage 2 hypertension. Jamerson, K.A., Nwose, O., Jean-Louis, L., Schofield, L., Purkayastha, D., Baron, M. Am. J. Hypertens. (2004) [Pubmed]
  12. Comparison of efficacy and side effects of combination therapy of angiotensin-converting enzyme inhibitor (benazepril) with calcium antagonist (either nifedipine or amlodipine) versus high-dose calcium antagonist monotherapy for systemic hypertension. Messerli, F.H., Oparil, S., Feng, Z. Am. J. Cardiol. (2000) [Pubmed]
  13. ACE DD genotype is more susceptible than ACE II and ID genotypes to the antiproteinuric effect of ACE inhibitors in patients with proteinuric non-insulin-dependent diabetes mellitus. Ha, S.K., Yong Lee, S., Su Park, H., Ho Shin, J., Jung Kim, S., Hun Kim, D., Rae Kim, K., Yung Lee, H., Suk Han, D. Nephrol. Dial. Transplant. (2000) [Pubmed]
  14. Insulin-induced hypertension in rats depends on an intact renin-angiotensin system. Brands, M.W., Harrison, D.L., Keen, H.L., Gardner, A., Shek, E.W., Hall, J.E. Hypertension (1997) [Pubmed]
  15. Unmasking of the hypotensive effect of nifedipine in normotensives by addition of the angiotensin converting enzyme inhibitor benazepril. Jakobsen, J., Glaus, L., Graf, P., Degen, P., Maurice, N.P., Bellet, M., Ménard, J. J. Hypertens. (1992) [Pubmed]
  16. Sympathomoderating influence of benazepril in essential hypertension. Giannattasio, C., Cattaneo, B.M., Omboni, S., Seravalle, G., Bolla, G., Turolo, L., Morganti, A., Grassi, G., Zanchetti, A., Mancia, G. J. Hypertens. (1992) [Pubmed]
  17. Effects of combined ACE inhibitor and angiotensin II antagonist treatment in human chronic nephropathies. Campbell, R., Sangalli, F., Perticucci, E., Aros, C., Viscarra, C., Perna, A., Remuzzi, A., Bertocchi, F., Fagiani, L., Remuzzi, G., Ruggenenti, P. Kidney Int. (2003) [Pubmed]
  18. A comparison in young and elderly subjects of the pharmacokinetics and pharmacodynamics of single and multiple doses of benazepril. Macdonald, N.J., Elliott, H.L., Hughes, D.M., Reid, J.L. British journal of clinical pharmacology. (1993) [Pubmed]
  19. Antiatherogenic effect of angiotensin converting enzyme inhibitor (benazepril) and angiotensin II receptor antagonist (valsartan) in the cholesterol-fed rabbits. Li, J., Hirose, N., Kawamura, M., Arai, Y. Atherosclerosis (1999) [Pubmed]
  20. Converting enzyme inhibition in coronary artery disease: a randomized, placebo-controlled trial with benazepril. Thürmann, P., Odenthal, H.J., Rietbrock, N. J. Cardiovasc. Pharmacol. (1991) [Pubmed]
  21. Chronic therapy for congestive heart failure with benazepril HCl, a new angiotensin converting enzyme inhibitor. Mirvis, D.M., Insel, J., Boland, M.J., Cinquegrani, M.P., Ghali, J.K., Rubin, S.A., Shanes, J., DeSilva, J., Whalen, J.J. Am. J. Med. Sci. (1990) [Pubmed]
  22. Beneficial effects of combined benazepril-amlodipine on cardiac nitric oxide, cGMP, and TNF-alpha production after cardiac ischemia. Siragy, H.M., Xue, C., Webb, R.L. J. Cardiovasc. Pharmacol. (2006) [Pubmed]
  23. ACE Inhibition with moexipril: a review of potential effects beyond blood pressure control. Pines, A., Fisman, E.Z. American journal of cardiovascular drugs : drugs, devices, and other interventions. (2003) [Pubmed]
  24. Maintenance of baseline angiotensin II potentiates insulin hypertension in rats. Keen, H.L., Brands, M.W., Smith, M.J., Hall, J.E. Hypertension (1998) [Pubmed]
  25. Determinants of angiotensin II generation during converting enzyme inhibition. Juillerat, L., Nussberger, J., Ménard, J., Mooser, V., Christen, Y., Waeber, B., Graf, P., Brunner, H.R. Hypertension (1990) [Pubmed]
  26. Biochemical components and myocardial performance after reversal of left ventricular hypertrophy in spontaneously hypertensive rats. Arita, M., Horinaka, S., Frohlich, E.D. J. Hypertens. (1993) [Pubmed]
  27. Amlodipine/benazepril combination therapy for hypertensive patients nonresponsive to benazepril monotherapy. Chrysant, S.G., Bakris, G.L. Am. J. Hypertens. (2004) [Pubmed]
  28. Beta2 adrenergic receptor gene Arg16Gly polymorphism is associated with therapeutic efficacy of benazepril on essential hypertension in Chinese. Huang, G., Xing, H., Hao, K., Peng, S., Wu, D., Guang, W., Huang, A., Hong, X., Wang, Y., Feng, Y., Zhang, Y., Li, J., Chen, C., Wang, B., Zhang, X., Li, D., Yu, Y., Liu, J., Zhu, G., Huo, Y., Chen, D., Hou, Y., Wang, X., Xu, X., Niu, T., Xu, X. Clin. Exp. Hypertens. (2004) [Pubmed]
  29. Effects of benazepril on renal function and kidney expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in diabetic rats. Sun, S.Z., Wang, Y., Li, Q., Tian, Y.J., Liu, M.H., Yu, Y.H. Chin. Med. J. (2006) [Pubmed]
  30. Associations of baseline blood pressure levels and efficacy of Benazepril treatment with interaction of alpha-adducin and ACE gene polymorphisms in hypertensives. Yu, Y., Niu, T., Venners, S.A., Zhang, Y., Chen, C., Huang, A., Feng, Y., Li, D., Xing, H., Wu, D., Peng, S., Xu, X. Clin. Exp. Hypertens. (2005) [Pubmed]
  31. D919G polymorphism of methionine synthase gene is associated with blood pressure response to benazepril in Chinese hypertensive patients. Zhang, Y., Zhang, M., Niu, T., Xu, X., Zhu, G., Huo, Y., Chen, C., Wang, X., Xing, H., Peng, S., Huang, A., Hong, X., Xu, X. J. Hum. Genet. (2004) [Pubmed]
  32. Blockade of angiotensin converting enzyme but not of angiotensin AT1 receptors improves glucose tolerance. Chow, L., De Gasparo, M., Levens, N. Eur. J. Pharmacol. (1997) [Pubmed]
  33. Angiotensin-converting enzyme inhibition and radial artery compliance in patients with congestive heart failure. Giannattasio, C., Failla, M., Stella, M.L., Mangoni, A.A., Turrini, D., Carugo, S., Pozzi, M., Grassi, G., Mancia, G. Hypertension (1995) [Pubmed]
  34. Benazepril. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in hypertension and congestive heart failure. Balfour, J.A., Goa, K.L. Drugs (1991) [Pubmed]
  35. Definition of the effective dose of the converting-enzyme inhibitor benazepril. Whalen, J.J. Am. Heart J. (1989) [Pubmed]
 
WikiGenes - Universities