The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Ciliary Arteries

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ciliary Arteries

 

High impact information on Ciliary Arteries

 

Biological context of Ciliary Arteries

 

Anatomical context of Ciliary Arteries

 

Associations of Ciliary Arteries with chemical compounds

  • Relaxation by bradykinin in porcine ciliary artery. Role of nitric oxide and K(+)-channels [14].
  • CONCLUSIONS: Only at concentrations far exceeding their expected plasma concentrations, betaxolol, befunolol, and timolol increased the diameter of the isolated porcine short posterior ciliary artery, as a result of their direct pharmacologic effect [15].
  • The isometric responses of isolated human posterior ciliary artery to adrenergic agonists, histamine (HIS), and 5-hydroxytryptamine (5-HT) were studied in passively stretched ring segments mounted in a myograph bath [16].
  • Serotonin-induced contractions also were more efficient in ciliary artery but less than to those to endothelin-1 [17].
  • The ophthalmic and ciliary arteries were dissected free under a microscope and suspended in myograph systems (95% O2 and 5% CO2, 37 degrees C) for isometric tension recording [17].
 

Gene context of Ciliary Arteries

  • CONCLUSIONS: In porcine ciliary arteries, Ox-LDL affects endothelium-dependent responses through the activation of ET(A)- endothelin receptors [18].
  • The ciliary artery and its branch vessels in the uvea are invested with a dense plexus of galanin-positive nerves [19].
  • Neither desensitisation to VIP (0.6 microM) nor treatment with the protease, alpha-chymotrypsin (10 U ml(-1)), had any effect on the first or second components of neurogenic relaxation.The results indicate that nitric oxide mediates the first component of neurogenic relaxation in the bovine intraocular ciliary artery [20].
  • These techniques are being applied to examine changes to the anterior ciliary arteries and the deeper vessels following strabismus surgery in an animal model [21].
  • AIM: To investigate the effect of myopia and myopic choroidal neovascularisation (CNV) on retrobulbar circulation in central retinal artery (CRA) and vein (CRV) and posterior ciliary artery (PCA) [22].
 

Analytical, diagnostic and therapeutic context of Ciliary Arteries

References

  1. The mechanisms of the ocular autonomic dysfunction during the intracarotid amytal suppression test. DeToledo, J.C., Ramsay, R.E. Epilepsy Res. (1997) [Pubmed]
  2. Ocular and retrobulbar blood flow in ocular hypertensives treated with topical timolol, betaxolol and carteolol. Steigerwalt, R.D., Laurora, G., Belcaro, G.V., Cesarone, M.R., De Sanctis, M.T., Incandela, L., Minicucci, R. Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics. (2001) [Pubmed]
  3. Vasoactive responses of U46619, PGF2alpha, latanoprost, and travoprost in isolated porcine ciliary arteries. Vysniauskiene, I., Allemann, R., Flammer, J., Haefliger, I.O. Invest. Ophthalmol. Vis. Sci. (2006) [Pubmed]
  4. Potent alpha(2A)-adrenoceptor-mediated vasoconstriction by brimonidine in porcine ciliary arteries. Wikberg-Matsson, A., Simonsen, U. Invest. Ophthalmol. Vis. Sci. (2001) [Pubmed]
  5. Requirement for flow in the blockade of endothelium-derived hyperpolarizing factor (EDHF) by ascorbate in the bovine ciliary artery. Nelli, S., Dowell, F.J., Wilson, W.S., Stirrat, A., Martin, W. Br. J. Pharmacol. (2004) [Pubmed]
  6. Angiotensin II does not contract bovine retinal resistance arteries in vitro. Nyborg, N.C., Nielsen, P.J., Prieto, D., Benedito, S. Exp. Eye Res. (1990) [Pubmed]
  7. Lack of bradykinin-induced smooth muscle cell hyperpolarization despite heterocellular dye coupling and endothelial cell hyperpolarization in porcine ciliary artery. Bény, J.L., Zhu, P., Haefliger, I.O. J. Vasc. Res. (1997) [Pubmed]
  8. Vasoconstrictive effect of topical timolol on human retinal arteries. Martin, X.D., Rabineau, P.A. Graefes Arch. Clin. Exp. Ophthalmol. (1989) [Pubmed]
  9. Color Doppler ultrasound measurements after topical and retrobulbar epinephrine in primate eyes. Netland, P.A., Siegner, S.W., Harris, A. Invest. Ophthalmol. Vis. Sci. (1997) [Pubmed]
  10. Intrinsic choroidal neurons in the duck eye express galanin. Schrödl, F., Brehmer, A., Neuhuber, W.L. J. Comp. Neurol. (2000) [Pubmed]
  11. Desmopressin-induced dog ciliary artery relaxation. Toda, M., Ayajiki, K., Okamura, T., Azuma, I., Toda, N. Eur. J. Pharmacol. (1998) [Pubmed]
  12. Choroidal blood flow. IV. effect of vasodilating agents. Chandra, S.R., Friedman, E. Arch. Ophthalmol. (1979) [Pubmed]
  13. Pharmacological effects of pilocarpine on rabbit ciliary artery. Yoshitomi, T., Ishikawa, H., Hayashi, E. Curr. Eye Res. (2000) [Pubmed]
  14. Relaxation by bradykinin in porcine ciliary artery. Role of nitric oxide and K(+)-channels. Zhu, P., Bény, J.L., Flammer, J., Lüscher, T.F., Haefliger, I.O. Invest. Ophthalmol. Vis. Sci. (1997) [Pubmed]
  15. Effects of topical beta-blockers on the diameter of the isolated porcine short posterior ciliary artery. Braakman, R., van der Linden, P., Sipkema, P. Invest. Ophthalmol. Vis. Sci. (1999) [Pubmed]
  16. Agonist response of human isolated posterior ciliary artery. Yu, D.Y., Alder, V.A., Su, E.N., Mele, E.M., Cringle, S.J., Morgan, W.H. Invest. Ophthalmol. Vis. Sci. (1992) [Pubmed]
  17. Heterogeneity of endothelium-dependent regulation in ophthalmic and ciliary arteries. Haefliger, I.O., Flammer, J., Lüscher, T.F. Invest. Ophthalmol. Vis. Sci. (1993) [Pubmed]
  18. Effect of Ox-LDL on endothelium-dependent response in pig ciliary artery: prevention by an ET(A) antagonist. Zhu, P., Dettmann, E.S., Resink, T.J., Lüscher, T.F., Flammer, J., Haefliger, I.O. Invest. Ophthalmol. Vis. Sci. (1999) [Pubmed]
  19. Galanin immunoreactivity in autonomic innervation of the cat eye. Grimes, P.A., McGlinn, A.M., Koeberlein, B., Stone, R.A. J. Comp. Neurol. (1994) [Pubmed]
  20. Biphasic neurogenic vasodilatation in the bovine intraocular long posterior ciliary artery: involvement of nitric oxide and an additional unidentified neurotransmitter. Overend, J., Wilson, W.S., Martin, W. Br. J. Pharmacol. (2005) [Pubmed]
  21. Anterior segment vascular casting. Olver, J.M., McCartney, A.C. Eye (London, England) (1989) [Pubmed]
  22. Retrobulbar circulation in myopic patients with or without myopic choroidal neovascularisation. Dimitrova, G., Tamaki, Y., Kato, S., Nagahara, M. The British journal of ophthalmology. (2002) [Pubmed]
  23. Local action of the renin angiotensin system in the porcine ophthalmic circulation: effects of ACE-inhibitors and angiotensin receptor antagonists. Meyer, P., Flammer, J., Lüscher, T.F. Invest. Ophthalmol. Vis. Sci. (1995) [Pubmed]
  24. Effects of lomerizine, a novel Ca2+ channel blocker, on the normal and endothelin-1-disturbed circulation in the optic nerve head of rabbits. Toriu, N., Sasaoka, M., Shimazawa, M., Sugiyama, T., Hara, H. Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics. (2001) [Pubmed]
 
WikiGenes - Universities