The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Ramiprilat     (1S,5S,7S)-6-[(2S)-2-[[(1S)- 1-carboxy-3...

Synonyms: Ramiprilate, Ramiprilatum, AC1NUYY2, SureCN467411, AG-L-66708, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Ramiprilat


High impact information on Ramiprilat


Chemical compound and disease context of Ramiprilat


Biological context of Ramiprilat


Anatomical context of Ramiprilat


Associations of Ramiprilat with other chemical compounds


Gene context of Ramiprilat

  • Studies with the converting enzyme inhibitor ramiprilat and the bradykinin receptor antagonist icatibant indicate that bradykinin mediates, at least partly, diuretic NPY effects [28].
  • In an endothelial cell line stably expressing human somatic ACE, ramiprilat increased COX-2 promoter activity, an effect not observed in ACE-deficient cells or cells expressing a nonphosphorylatable ACE mutant (S1270A) [29].
  • The ramiprilat-induced, ACE-dependent increase in COX-2 expression and promoter activity (both 1.5- to 2-fold greater than control) was prevented by the inhibition of JNK [29].
  • However, B2 receptor-deficient mice (B2-/-) unexpectedly responded to IPC or ramiprilat like WT mice [30].
  • Ramiprilat also reduced infarct size by 29% in WT, but in TK-/- its effect was completely suppressed [30].

Analytical, diagnostic and therapeutic context of Ramiprilat


  1. Attenuation of myocardial stunning by the ACE inhibitor ramiprilat through a signal cascade of bradykinin and prostaglandins but not nitric oxide. Ehring, T., Baumgart, D., Krajcar, M., Hümmelgen, M., Kompa, S., Heusch, G. Circulation (1994) [Pubmed]
  2. Aspirin does not prevent the attenuation of myocardial stunning by the ACE inhibitor ramiprilat. Rose, J., Ehring, T., Sakka, S.G., Skyschally, A., Heusch, G. J. Mol. Cell. Cardiol. (1996) [Pubmed]
  3. Inhibition of nitric oxide synthase prevents myocardial protection by ramiprilat. Hartman, J.C., Kurc, G.M., Hullinger, T.G., Wall, T.M., Sheehy, R.M., Shebuski, R.J. J. Pharmacol. Exp. Ther. (1994) [Pubmed]
  4. Protective effect of omapatrilat, a vasopeptidase inhibitor, on the metabolism of bradykinin in normal and failing human hearts. Blais, C., Fortin, D., Rouleau, J.L., Molinaro, G., Adam, A. J. Pharmacol. Exp. Ther. (2000) [Pubmed]
  5. Reduction of myocardial infarct size by ramiprilat is independent of angiotensin II synthesis inhibition. Hartman, J.C., Hullinger, T.G., Wall, T.M., Shebuski, R.J. Eur. J. Pharmacol. (1993) [Pubmed]
  6. ACE inhibitors promote nitric oxide accumulation to modulate myocardial oxygen consumption. Zhang, X., Xie, Y.W., Nasjletti, A., Xu, X., Wolin, M.S., Hintze, T.H. Circulation (1997) [Pubmed]
  7. Coronary vasodilation induced by angiotensin-converting enzyme inhibition in vivo: differential contribution of nitric oxide and bradykinin in conductance and resistance arteries. Sudhir, K., Chou, T.M., Hutchison, S.J., Chatterjee, K. Circulation (1996) [Pubmed]
  8. Felodipine inhibits free-radical production by cytokines and glucose in human smooth muscle cells. Hishikawa, K., Lüscher, T.F. Hypertension (1998) [Pubmed]
  9. Regulation of beta-adrenergic receptors on endothelial cells in culture. Graf, K., Gräfe, M., Dümmler, U., O'Connor, A., Regitz-Zagrosek, V., Kunkel, G., Auch-Schwelk, W., Fleck, E. Eur. Heart J. (1993) [Pubmed]
  10. Angiotensin-converting enzyme inhibitors unmask endogenous kinin production by bovine coronary artery endothelium. Hecker, M., Bara, A.T., Busse, R. Eur. Heart J. (1993) [Pubmed]
  11. Inhibitors of bradykinin-inactivating enzymes decrease myocardial ischemia/reperfusion injury following 3 and 7 days of reperfusion. Schriefer, J.A., Broudy, E.P., Hassen, A.H. J. Pharmacol. Exp. Ther. (2001) [Pubmed]
  12. The role of bradykinin and nitric oxide in the cardioprotective action of ACE inhibitors. Hartman, J.C. Ann. Thorac. Surg. (1995) [Pubmed]
  13. Differential effects of saralasin and ramiprilat, the inhibitors of renin-angiotensin system, on cerulein-induced acute pancreatitis. Tsang, S.W., Ip, S.P., Wong, T.P., Che, C.T., Leung, P.S. Regul. Pept. (2003) [Pubmed]
  14. Steady-state kinetics of ramipril in renal failure. Schunkert, H., Kindler, J., Gassmann, M., Lahn, W., Irmisch, R., Debusmann, E.R., Ocón-Pujadas, J., Sieberth, H.G. J. Cardiovasc. Pharmacol. (1989) [Pubmed]
  15. Kinins, nitric oxide, and the hypotensive effect of captopril and ramiprilat in hypertension. Cachofeiro, V., Sakakibara, T., Nasjletti, A. Hypertension (1992) [Pubmed]
  16. Effect of temperature and chloride on steady-state inhibition of angiotensin I-converting enzyme by enalaprilat and ramiprilat. Skoglof, A., Göthe, P.O., Deinum, J. Biochem. J. (1990) [Pubmed]
  17. Clinical pharmacokinetics of ramipril. Meisel, S., Shamiss, A., Rosenthal, T. Clinical pharmacokinetics. (1994) [Pubmed]
  18. Intravascular and interstitial degradation of bradykinin in isolated perfused rat heart. Dendorfer, A., Wolfrum, S., Wellhöner, P., Korsman, K., Dominiak, P. Br. J. Pharmacol. (1997) [Pubmed]
  19. Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin. Wiemer, G., Schölkens, B.A., Becker, R.H., Busse, R. Hypertension (1991) [Pubmed]
  20. Lisinopril and ramiprilat protection of the vascular endothelium against free radical-induced functional injury. Gillis, C.N., Chen, X., Merker, M.M. J. Pharmacol. Exp. Ther. (1992) [Pubmed]
  21. Synthesis of kininogen and degradation of bradykinin by PC12 cells. Dendorfer, A., Wellhöner, P., Braun, A., Roscher, A.A., Dominiak, P. Br. J. Pharmacol. (1997) [Pubmed]
  22. ACE inhibition lowers angiotensin II-induced chemokine expression by reduction of NF-kappaB activity and AT1 receptor expression. Schmeisser, A., Soehnlein, O., Illmer, T., Lorenz, H.M., Eskafi, S., Roerick, O., Gabler, C., Strasser, R., Daniel, W.G., Garlichs, C.D. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  23. Effects of one-hour and one-week treatment with ramipril on plasma and renal brush border angiotensin converting enzyme in the rat. Michel, B., Stephan, D., Grima, M., Barthelmebs, M., Imbs, J.L. Eur. J. Pharmacol. (1993) [Pubmed]
  24. Inhibition by converting enzyme inhibitors of pig kidney aminopeptidase P. Hooper, N.M., Hryszko, J., Oppong, S.Y., Turner, A.J. Hypertension (1992) [Pubmed]
  25. Potentiation of the vascular response to kinins by inhibition of myocardial kininases. Dendorfer, A., Wolfrum, S., Schäfer, U., Stewart, J.M., Inamura, N., Dominiak, P. Hypertension (2000) [Pubmed]
  26. Threshold sodium excretory and renal blood flow effects of angiotensin converting enzyme inhibition. Zhang, X., Dunham, E.W., Zimmerman, B.G. J. Hypertens. (1995) [Pubmed]
  27. Potential role of eNOS in the therapeutic control of myocardial oxygen consumption by ACE inhibitors and amlodipine. Loke, K.E., Messina, E.J., Shesely, E.G., Kaley, G., Hintze, T.H. Cardiovasc. Res. (2001) [Pubmed]
  28. Renal effects of neuropeptide Y. Bischoff, A., Michel, M.C. Pflugers Arch. (1998) [Pubmed]
  29. Signaling via the angiotensin-converting enzyme enhances the expression of cyclooxygenase-2 in endothelial cells. Kohlstedt, K., Busse, R., Fleming, I. Hypertension (2005) [Pubmed]
  30. Role of tissue kallikrein in the cardioprotective effects of ischemic and pharmacological preconditioning in myocardial ischemia. Griol-Charhbili, V., Messadi-Laribi, E., Bascands, J.L., Heudes, D., Meneton, P., Giudicelli, J.F., Alhenc-Gelas, F., Richer, C. FASEB J. (2005) [Pubmed]
  31. Ramiprilat increases bradykinin outflow from isolated hearts of rat. Baumgarten, C.R., Linz, W., Kunkel, G., Schölkens, B.A., Wiemer, G. Br. J. Pharmacol. (1993) [Pubmed]
  32. Pressor action of angiotensin I at the ventrolateral medulla: effect of selective angiotensin blockade. Lima, D.X., Fontes, M.A., Oliveira, R.C., Campagnole-Santos, M.J., Khosla, M.C., Santos, R.A. Immunopharmacology (1996) [Pubmed]
  33. High-performance liquid chromatography-mass spectrometric analysis of ramipril and its active metabolite ramiprilat in human serum: application to a pharmacokinetic study in the Chinese volunteers. Lu, X.Y., Shen-Tu, J.Z., Liu, J. Journal of pharmaceutical and biomedical analysis. (2006) [Pubmed]
  34. Experimental cardiovascular benefits of angiotensin-converting enzyme inhibitors: beyond blood pressure reduction. Schölkens, B.A., Linz, W., Martorana, P.A. J. Cardiovasc. Pharmacol. (1991) [Pubmed]
WikiGenes - Universities