The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Bacillus thuringiensis

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Bacillus thuringiensis


High impact information on Bacillus thuringiensis


Chemical compound and disease context of Bacillus thuringiensis


Biological context of Bacillus thuringiensis


Anatomical context of Bacillus thuringiensis


Gene context of Bacillus thuringiensis

  • Distinct clpP genes control specific adaptive responses in Bacillus thuringiensis [26].
  • A significant fraction of the amphiphilic AChE species was converted into hydrophilic components by incubation of the soluble enzyme with phosphatidylinositol-specific phospholipase C (PIPLC) from Bacillus thuringiensis, this fraction being increased by a double treatment with PIPLC and alkaline hydroxylamine [27].
  • We showed that some of Thy-1 molecules on murine thymocytes are resistant to phosphatidylinositol-specific phospholipase C (PI-PLC) derived from Bacillus thuringiensis [28].
  • In the absence of a functional ORF2 polypeptide the toxin does not form the crystalline inclusions characteristic of other known Bacillus thuringiensis toxins [18].
  • A new cryI-related sequence designated cryIM was cloned using an immunoscreening technique from ssp. wuhanensis of Bacillus thuringiensis (BT), previously reported to produce multiple Cry proteins [Chestukhina et al. (1994) Can. J. Microbiol. 240, 1026-1034] [29].

Analytical, diagnostic and therapeutic context of Bacillus thuringiensis


  1. Cloning, expression, and mutagenesis of phosphatidylinositol-specific phospholipase C from Staphylococcus aureus: a potential staphylococcal virulence factor. Daugherty, S., Low, M.G. Infect. Immun. (1993) [Pubmed]
  2. Activation of insect cell adenylate cyclase by Bacillus thuringiensis delta-endotoxins and melittin. Toxicity is independent of cyclic AMP. Knowles, B.H., Farndale, R.W. Biochem. J. (1988) [Pubmed]
  3. Bacitracin-induced proteins in Bacillus subtilis and Bacillus thuringiensis and their relationship with resistance. García-Patrone, M. Antimicrob. Agents Chemother. (1990) [Pubmed]
  4. IS231A from Bacillus thuringiensis is functional in Escherichia coli: transposition and insertion specificity. Hallet, B., Rezsöhazy, R., Delcour, J. J. Bacteriol. (1991) [Pubmed]
  5. Listeria monocytogenes phosphatidylinositol (PI)-specific phospholipase C has low activity on glycosyl-PI-anchored proteins. Gandhi, A.J., Perussia, B., Goldfine, H. J. Bacteriol. (1993) [Pubmed]
  6. Inhibition of adenyl cyclase by an exotoxin of Bacillus thuringiensis. Grahame-Smith, D.G., Isaac, P., Heal, D.J., Bond, R.P. Nature (1975) [Pubmed]
  7. Bioassay of solubilized Bacillus thuringiensis var. israelensis crystals by attachment to latex beads. Schnell, D.J., Pfannenstiel, M.A., Nickerson, K.W. Science (1984) [Pubmed]
  8. Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis. Liu, D., Lepore, B.W., Petsko, G.A., Thomas, P.W., Stone, E.M., Fast, W., Ringe, D. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  9. Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies. Stanley-Horn, D.E., Dively, G.P., Hellmich, R.L., Mattila, H.R., Sears, M.K., Rose, R., Jesse, L.C., Losey, J.E., Obrycki, J.J., Lewis, L. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  10. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Cheng, X., Sardana, R., Kaplan, H., Altosaar, I. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  11. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Gould, F., Martinez-Ramirez, A., Anderson, A., Ferre, J., Silva, F.J., Moar, W.J. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  12. Optimizing the interfacial binding and activity of a bacterial phosphatidylinositol-specific phospholipase C. Feng, J., Bradley, W.D., Roberts, M.F. J. Biol. Chem. (2003) [Pubmed]
  13. Amino acid sequence and entomocidal activity of the P2 crystal protein. An insect toxin from Bacillus thuringiensis var. kurstaki. Donovan, W.P., Dankocsik, C.C., Gilbert, M.P., Gawron-Burke, M.C., Groat, R.G., Carlton, B.C. J. Biol. Chem. (1988) [Pubmed]
  14. Specific binding of the E2 subunit of pyruvate dehydrogenase to the upstream region of Bacillus thuringiensis protoxin genes. Walter, T., Aronson, A. J. Biol. Chem. (1999) [Pubmed]
  15. Molecular characterization and sequence of phosphatidylinositol-specific phospholipase C of Bacillus thuringiensis. Lechner, M., Kupke, T., Stefanovic, S., Götz, F. Mol. Microbiol. (1989) [Pubmed]
  16. Sphingosine phosphate lyase expression is essential for normal development in Caenorhabditis elegans. Mendel, J., Heinecke, K., Fyrst, H., Saba, J.D. J. Biol. Chem. (2003) [Pubmed]
  17. Identification of a gene (mob14-3) encoding a mobilization protein from the Bacillus thuringiensis subsp. israelensis plasmid pTX14-3. Andrup, L., Bolander, G., Boe, L., Madsen, S.M., Nielsen, T.T., Wassermann, K. Nucleic Acids Res. (1991) [Pubmed]
  18. Involvement of a possible chaperonin in the efficient expression of a cloned CryIIA delta-endotoxin gene in Bacillus thuringiensis. Crickmore, N., Ellar, D.J. Mol. Microbiol. (1992) [Pubmed]
  19. Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Downing, K.J., Leslie, G., Thomson, J.A. Appl. Environ. Microbiol. (2000) [Pubmed]
  20. A recombinase-mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Sanchis, V., Agaisse, H., Chaufaux, J., Lereclus, D. Appl. Environ. Microbiol. (1997) [Pubmed]
  21. Bacillus thuringiensis CrylAa delta-endotoxin affects the K+/amino acid symport in Bombyx mori larval midgut. Leonardi, M.G., Parenti, P., Casartelli, M., Giordana, B. J. Membr. Biol. (1997) [Pubmed]
  22. Rapid analysis of glycolipid anchors in amphiphilic dimers of acetylcholinesterases. Toutant, J.P., Krall, J.A., Richards, M.K., Rosenberry, T.L. Cell. Mol. Neurobiol. (1991) [Pubmed]
  23. Immunologically unrelated Heliothis sp. and Spodoptera sp. midgut membrane-proteins bind Bacillus thuringiensis CryIA(b) delta-endotoxin. Oddou, P., Hartmann, H., Radecke, F., Geiser, M. Eur. J. Biochem. (1993) [Pubmed]
  24. Insertion behavior of the Bacillus thuringiensis Cry4Ba insecticidal protein into lipid monolayers. Kanintronkul, Y., Srikhirin, T., Angsuthanasombat, C., Kerdcharoen, T. Arch. Biochem. Biophys. (2005) [Pubmed]
  25. Membrane-bound choline-O-acetyltransferase in rat hippocampal tissue is anchored by glycosyl-phosphatidylinositol. Smith, L.K., Carroll, P.T. Brain Res. (1993) [Pubmed]
  26. Distinct clpP genes control specific adaptive responses in Bacillus thuringiensis. Fedhila, S., Msadek, T., Nel, P., Lereclus, D. J. Bacteriol. (2002) [Pubmed]
  27. Monomers and dimers of acetylcholinesterase in human meningioma are anchored to the membrane by glycosylphosphatidylinositol. Sáez-Valero, J., Vidal, C.J. Neurosci. Lett. (1995) [Pubmed]
  28. T cell maturation stage-linked heterogeneity of the glycosylphosphatidylinositol membrane anchor of Thy-1. Nakashima, I., Yoshida, T., Zhang, Y.H., Pu, M.Y., Taguchi, R., Ikezawa, H., Isobe, K., Iwamoto, T., Kato, M., Lwin, T. Immunobiology (1992) [Pubmed]
  29. A novel delta-endotoxin gene cryIM from Bacillus thuringiensis ssp. wuhanensis. Shevelev, A.B., Kogan YaN, n.u.l.l., Bushueva, A.M., Voronina, E.J., Rebrikov, D.V., Novikova, S.I., Chestukhina, G.G., Kuvshinov, V., Pehu, E., Stepanov, V.M. FEBS Lett. (1997) [Pubmed]
  30. Single amino acid changes in domain II of Bacillus thuringiensis CryIAb delta-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles. Rajamohan, F., Alcantara, E., Lee, M.K., Chen, X.J., Curtiss, A., Dean, D.H. J. Bacteriol. (1995) [Pubmed]
  31. Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine. Derbyshire, D.J., Ellar, D.J., Li, J. Acta Crystallogr. D Biol. Crystallogr. (2001) [Pubmed]
  32. Determination of poly-beta-hydroxybutyric acid in Bacillus thuringiensis by capillary zone electrophoresis with indirect ultraviolet absorbance detection. He, J., Chen, S., Yu, Z. Journal of chromatography. A. (2002) [Pubmed]
  33. Chromosome aberration assays for the study of cyclophosphamide and Bacillus thuringiensis in Oxya chinensis (Orthoptera: Acrididae). Ren, Z., Ma, E., Guo, Y. Mutat. Res. (2002) [Pubmed]
  34. A constitutively expressed 36 kDa exochitinase from Bacillus thuringiensis HD-1. Arora, N., Ahmad, T., Rajagopal, R., Bhatnagar, R.K. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
WikiGenes - Universities