The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Efferent Pathways

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Efferent Pathways

  • Further analyses will determine whether other hereditary disorders with primitive involvement of the central motor pathways, as pure forms of spastic paraplegia, could be due to alsin dysfunction [1].
  • The NADPH diaphorase histochemical reaction was used in combination with retrograde axonal transport of Fluorogold (FG) from the major pelvic ganglion (MPG) to determine if NADPH diaphorase is contained within afferent and preganglionic efferent pathways to pelvic visceral organs [2].
  • The adenosine A2a receptor localization to striatopallidal neurons suggests that a selective activation of the striatopallidal efferent pathway is involved in the expression of catalepsy induced by intrastriatal infusion of CGS 21680C [3].
  • Parkinson's disease (PD), a hypokinetic disorder, and Huntington's disease (HD), a hyperkinetic disorder, share the fact that in the motor pathways the dysfunction starts in the striatum [4].
  • We used magnetic cortical stimulation (a painless alternative to electrocortical stimulation) and F-wave analysis to study conduction in the central and peripheral motor pathways in 18 HTLV-I seropositive, Jamaican TSP patients (ages 29-70 years; duration of symptoms 3-20 years) and 22 normal controls [5].

High impact information on Efferent Pathways

  • These effects are discussed in light of recent studies suggesting that dopamine, acting on D1 and D2 dopamine receptor subtypes, activates distinct efferent pathways from the striatum [6].
  • We propose that imbalance between dynorphin and substance P release from the same striatonigral motor efferent pathway, related to D3 receptor induction, is responsible for behavioral sensitization [7].
  • The stimulation of these neurons activates efferent pathways which induce the release of ANP [8].
  • The results suggest that the caudate-putamen and its gamma-aminobutyrate-dependent efferent pathways modulate the threshold for seizures in the limbic forebrain [9].
  • We conclude that left atrial distention reflexly reduces the rates of renin secretion via vagal afferent and renal sympathetic efferent pathways [10].

Chemical compound and disease context of Efferent Pathways


Biological context of Efferent Pathways


Anatomical context of Efferent Pathways


Associations of Efferent Pathways with chemical compounds

  • We report that the GABAergic striopallidal neuron, which is a key component of the indirect striatal efferent pathway, is a main locus for A2-D2 interactions in the brain and possibly a main target for the central actions of adenosine agonists and antagonists [23].
  • The ability to DNFB tolerant cells to block afferent sensitization pathways differs from the mechanism of tolerance to picryl chloride, reported by others, where efferent pathways are blocked [24].
  • Octreotide was shown to reduce the perception of rectal distension without affecting motor pathways or local rectal reflexes [25].
  • This suggests a similarity in the pattern of neuronal activity evoked by PGE1 and leucocyte pyrogen, at least at the site(s) where atropine directly or indirectly exerted its effect and in the efferent pathways from this site [26].
  • Specific enhancement by fentanyl of the effects of intrathecal bupivacaine on nociceptive afferent but not on sympathetic efferent pathways in dogs [20].

Gene context of Efferent Pathways

  • These include genes whose products act in two spindle motor pathways that overlap in function with Cin8p, the kinesin-related Kip1p pathway and the cytoplasmic dynein pathway [27].
  • The present study suggests that orexin-containing neurons in the perifornical area play a role as one of the efferent pathways of defense response and also operate as a regulator of AP at basal condition by activating sympathetic outflow [28].
  • This action depends not only on a direct activation of the muscle through NK1 and/or NK2 receptors, but also on stimulation of excitatory enteric motor pathways through NK3 and/or NK1 receptors [29].
  • The substance P-containing striatal efferent pathway was more resistant to the HD mutation than met-enkephalin-producing striatal projection neurons in the transgenics, based on neuropeptide immunofluorescent staining [30].
  • We report that NR2A and NR2B mRNA levels did not change within the anterior forebrain or vocal motor pathways after adult deafening, even after substantial changes in song structure [31].

Analytical, diagnostic and therapeutic context of Efferent Pathways


  1. Infantile-onset ascending hereditary spastic paralysis is associated with mutations in the alsin gene. Eymard-Pierre, E., Lesca, G., Dollet, S., Santorelli, F.M., di Capua, M., Bertini, E., Boespflug-Tanguy, O. Am. J. Hum. Genet. (2002) [Pubmed]
  2. Localization of NADPH-diaphorase in pelvic afferent and efferent pathways of the rat. Vizzard, M.A., Erdman, S.L., de Groat, W.C. Neurosci. Lett. (1993) [Pubmed]
  3. Stimulation of adenosine A2a receptors in the rat striatum induces catalepsy that is reversed by antagonists of N-methyl-D-aspartate receptors. Hauber, W., Münkle, M. Neurosci. Lett. (1995) [Pubmed]
  4. Behavioral and anatomical effects of quinolinic acid in the striatum of the hemiparkinsonian rat. Olds, M.E., Jacques, D.B., Kopyov, O. Synapse (2005) [Pubmed]
  5. Motor pathway analysis in HAM/TSP using magnetic stimulation and F-waves. Young, R.E., Morgan, O.S., Forster, A. The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques. (1998) [Pubmed]
  6. Dopamine receptor interactions: some implications for the treatment of Parkinson's disease. Robertson, H.A. Trends Neurosci. (1992) [Pubmed]
  7. Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. Bordet, R., Ridray, S., Carboni, S., Diaz, J., Sokoloff, P., Schwartz, J.C. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  8. Essential role of hypothalamic muscarinic and alpha-adrenergic receptors in atrial natriuretic peptide release induced by blood volume expansion. Antunes-Rodrigues, J., Marubayashi, U., Favaretto, A.L., Gutkowska, J., McCann, S.M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  9. Paradoxical anticonvulsant activity of the excitatory amino acid N-methyl-D-aspartate in the rat caudate-putamen. Turski, L., Meldrum, B.S., Cavalheiro, E.A., Calderazzo-Filho, L.S., Bortolotto, Z.A., Ikonomidou-Turski, C., Turski, W.A. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  10. Reflex suppression of renin secretion during distention of cardiopulmonary receptors in dogs. Zehr, J.E., Hasbargen, J.A., Kurz, K.D. Circ. Res. (1976) [Pubmed]
  11. Changes in baroreceptor vagal reflex performance in the developing rat. Kasparov, S., Paton, J.F. Pflugers Arch. (1997) [Pubmed]
  12. The significance of a crossed extensor hallucis response in neurologic disorders: a comparison with the Babinski sign. Hindfelt, B., Rosén, I., Hanko, J. Acta neurologica Scandinavica. (1976) [Pubmed]
  13. Autosomal recessive adult-onset amyotrophic lateral sclerosis associated with homozygosity for Asp90Ala CuZn-superoxide dismutase mutation. A clinical and genealogical study of 36 patients. Andersen, P.M., Forsgren, L., Binzer, M., Nilsson, P., Ala-Hurula, V., Keränen, M.L., Bergmark, L., Saarinen, A., Haltia, T., Tarvainen, I., Kinnunen, E., Udd, B., Marklund, S.L. Brain (1996) [Pubmed]
  14. Similar time course changes in striatal levels of glutamic acid decarboxylase and proenkephalin mRNA following dopaminergic deafferentation in the rat. Vernier, P., Julien, J.F., Rataboul, P., Fourrier, O., Feuerstein, C., Mallet, J. J. Neurochem. (1988) [Pubmed]
  15. Cannabinoid inhibition of guinea-pig intestinal peristalsis via inhibition of excitatory and activation of inhibitory neural pathways. Heinemann, A., Shahbazian, A., Holzer, P. Neuropharmacology (1999) [Pubmed]
  16. Impaired facilitation of motor evoked potentials in incomplete spinal cord injury. Diehl, P., Kliesch, U., Dietz, V., Curt, A. J. Neurol. (2006) [Pubmed]
  17. Neuroanatomy, neurophysiology, and central auditory assessment. Part III: Corpus callosum and efferent pathways. Musiek, F.E. Ear and hearing. (1986) [Pubmed]
  18. Brainstem and basal ganglia lesions in xeroderma pigmentosum group A. Hayashi, M., Araki, S., Kohyama, J., Shioda, K., Fukatsu, R., Tamagawa, K. J. Neuropathol. Exp. Neurol. (2004) [Pubmed]
  19. Schizophrenia and glutamatergic transmission. Tamminga, C.A. Critical reviews in neurobiology. (1998) [Pubmed]
  20. Specific enhancement by fentanyl of the effects of intrathecal bupivacaine on nociceptive afferent but not on sympathetic efferent pathways in dogs. Wang, C., Chakrabarti, M.K., Whitwam, J.G. Anesthesiology (1993) [Pubmed]
  21. Apomorphine and dopamine D(1) receptor agonists increase the firing rates of subthalamic nucleus neurons. Kreiss, D.S., Anderson, L.A., Walters, J.R. Neuroscience (1996) [Pubmed]
  22. Contralateral head movements produced by microinjection of glutamate into superior colliculus of rats: evidence for mediation by multiple output pathways. Dean, P., Mitchell, I.J., Redgrave, P. Neuroscience (1988) [Pubmed]
  23. The striopallidal neuron: a main locus for adenosine-dopamine interactions in the brain. Ferré, S., O'Connor, W.T., Fuxe, K., Ungerstedt, U. J. Neurosci. (1993) [Pubmed]
  24. Tolerance and contact sensitivity to DNFB in mice. VI. Inhibition of afferent sensitivity by suppressor T cells in adoptive tolerance. Moorhead, J.W. J. Immunol. (1976) [Pubmed]
  25. Octreotide in gastrointestinal motility disorders. Owyang, C. Gut (1994) [Pubmed]
  26. Effects of atropine, injected into a lateral cerebral ventricle of the rabbit, on fevers due to intravenous leucocyte pyrogen and hypothalamic and intraventricular injections of prostaglandin E1. Cooper, K.E., Preston, E., Veale, W.L. J. Physiol. (Lond.) (1976) [Pubmed]
  27. Saccharomyces cerevisiae genes required in the absence of the CIN8-encoded spindle motor act in functionally diverse mitotic pathways. Geiser, J.R., Schott, E.J., Kingsbury, T.J., Cole, N.B., Totis, L.J., Bhattacharyya, G., He, L., Hoyt, M.A. Mol. Biol. Cell (1997) [Pubmed]
  28. Attenuated defense response and low basal blood pressure in orexin knockout mice. Kayaba, Y., Nakamura, A., Kasuya, Y., Ohuchi, T., Yanagisawa, M., Komuro, I., Fukuda, Y., Kuwaki, T. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2003) [Pubmed]
  29. Tachykinins in the gut. Part I. Expression, release and motor function. Holzer, P., Holzer-Petsche, U. Pharmacol. Ther. (1997) [Pubmed]
  30. Striatal neurochemical changes in transgenic models of Huntington's disease. Ariano, M.A., Aronin, N., Difiglia, M., Tagle, D.A., Sibley, D.R., Leavitt, B.R., Hayden, M.R., Levine, M.S. J. Neurosci. Res. (2002) [Pubmed]
  31. Developmental patterns of NMDAR expression within the song system do not recur during adult vocal plasticity in zebra finches. Scott, L.L., Singh, T.D., Nordeen, E.J., Nordeen, K.W. J. Neurobiol. (2004) [Pubmed]
  32. EEG and serum prolactin studies in relation to transcutaneous stimulation of central motor pathways. Boyd, S.G., de Silva, L.V. J. Neurol. Neurosurg. Psychiatr. (1986) [Pubmed]
  33. Primary motor cortex isolation: complete paralysis with preserved primary motor cortex. Sakai, K., Kojima, E., Suzuki, M., Ugawa, Y., Terao, Y., Hanajima, R., Kanazawa, I. J. Neurol. Sci. (1998) [Pubmed]
  34. The influence of acute and chronic cervical sympathectomy on the ocular hypotensive effect of clonidine. Innemee, H.C., van Ommeren, J.D., van Zwieten, P.A. Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie. Albrecht von Graefe's archive for clinical and experimental ophthalmology. (1979) [Pubmed]
  35. Efferent pathways in the reflex control of gastric emptying in rats. Forster, E.R., Green, T., Dockray, G.J. Am. J. Physiol. (1991) [Pubmed]
WikiGenes - Universities