The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

S100A8  -  S100 calcium binding protein A8

Homo sapiens

Synonyms: 60B8AG, CAGA, CFAG, CGLA, CP-10, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of S100A8


High impact information on S100A8


Chemical compound and disease context of S100A8


Biological context of S100A8


Anatomical context of S100A8

  • BACKGROUND: Calprotectin (complex of S100A8 and S100A9) is the major calcium and zinc-binding protein of phagocytes [16].
  • Further investigations have to explore the exact function of the S100A8/A9-arachidonic acid complex both inside and outside of neutrophils [14].
  • These results indicate that the effects of IVIG in KD may be mediated by suppression of an array of immune activation genes in monocytes, including those activating FcgammaRs and the S100A8/A9 heterocomplex [2].
  • Stimulation of neutrophil-like HL-60 cells with phorbol 12-myristate 13-acetate led to the secretion of S100A8/A9 protein complex, which carried the released arachidonic acid [14].
  • Here we demonstrate S100A8 and S100A9 protein and mRNA in macrophages, foam cells, and neovessels in human atheroma [1].

Associations of S100A8 with chemical compounds

  • When elevation of intracellular calcium level was induced by A23187, release of arachidonic acid occurred without secretion of S100A8/A9 [14].
  • Neutrophil preincubation with the Src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d]pyrimidine and the Syk tyrosine kinase inhibitor trans-3,3',4,5'-tetrahydrozystilbene significantly reduced the release of S100A8/A9, suggesting that the Src tyrosine kinase family and Syk were involved [17].
  • Recombinantly expressed murine S100A9 interacts in vitro with murine and human S100A8 in an in vitro glutathione S-transferase pull-down assay [18].
  • Results: Norepinephrine stimulated the expression of S100A8/S100A9 mRNAs via beta-adrenergic receptors in U-937 cells and significantly increased calprotectin production to about 3.6-fold that of the control [19].
  • S100A8 and S100A9 calcium-binding proteins: localization within normal and cyclosporin A-induced overgrowth gingiva [20].

Physical interactions of S100A8

  • The S100A8/S100A9 complex was found to be abundant in the adventitia and media in affected arteries [21].
  • S100A8/A9 complexes, as well as S100A9 homodimers, stimulated the production of proinflammatory cytokines, such as tumor necrosis factor alpha, by purified monocytes and in vitro-differentiated macrophages [22].
  • Interaction of S100A8/S100A9-arachidonic acid complexes with the scavenger receptor CD36 may facilitate fatty acid uptake by endothelial cells [23].
  • The CF-antigen has been shown to consist of the two calcium-binding proteins MRP8 and MRP14 [24].
  • MIF appears to interact with cell surface CD74, with consequent activation of MAP kinases but possibly not NFkappaB intracellular signal transduction [25].

Regulatory relationships of S100A8


Other interactions of S100A8

  • Plasma S100A8/A9 heterocomplex, but not S100A9, levels were elevated in patients with acute KD compared with those in febrile controls [2].
  • We previously identified a carboxylate modification of N-linked glycans that is recognized by S100A8, S100A9, and S100A12 [27].
  • Conclusions.-The S100A8 and S100A12 proteins are considered markers of non-infectious inflammatory disease, while the function of S100P is still largely unknown [28].
  • Isolated ST cells from patients with RA spontaneously released larger amounts of S100A8/A9 protein than did the cells from patients with OA [22].
  • Released MRP8/14 may serve a function by enhancing CD11b expression and/or affinity in human monocytes and by participating in the transendothelial migration mechanism [29].
  • Repression of annexin A6 expression by small interfering RNA in SKBR3 cells abolishes the cell surface exposition of S100A8/A9 upon calcium influx, suggesting that annexin A6 contributes to the calcium-dependent cell surface exposition of the membrane associated-S100A8/A9 complex [30].

Analytical, diagnostic and therapeutic context of S100A8


  1. S100A8 and S100A9 in human arterial wall. Implications for atherogenesis. McCormick, M.M., Rahimi, F., Bobryshev, Y.V., Gaus, K., Zreiqat, H., Cai, H., Lord, R.S., Geczy, C.L. J. Biol. Chem. (2005) [Pubmed]
  2. Gene expression profiling of the effect of high-dose intravenous Ig in patients with Kawasaki disease. Abe, J., Jibiki, T., Noma, S., Nakajima, T., Saito, H., Terai, M. J. Immunol. (2005) [Pubmed]
  3. Proteome analysis reveals disease-associated marker proteins to differentiate RA patients from other inflammatory joint diseases with the potential to monitor anti-TNFalpha therapy. Drynda, S., Ringel, B., Kekow, M., Kühne, C., Drynda, A., Glocker, M.O., Thiesen, H.J., Kekow, J. Pathol. Res. Pract. (2004) [Pubmed]
  4. Up-regulation of s100a8 and s100a9 protein in bronchial epithelial cells by lipopolysaccharide. Henke, M.O., Renner, A., Rubin, B.K., Gyves, J.I., Lorenz, E., Koo, J.S. Exp. Lung Res. (2006) [Pubmed]
  5. The expression of S100A8 in pancreatic cancer-associated monocytes is associated with the Smad4 status of pancreatic cancer cells. Sheikh, A.A., Vimalachandran, D., Thompson, C.C., Jenkins, R.E., Nedjadi, T., Shekouh, A., Campbell, F., Dodson, A., Prime, W., Crnogorac-Jurcevic, T., Lemoine, N.R., Costello, E. Proteomics (2007) [Pubmed]
  6. Leukocyte L1 protein and the cystic fibrosis antigen. Andersson, K.B., Sletten, K., Berntzen, H.B., Fagerhol, M.K., Dale, I., Brandtzaeg, P., Jellum, E. Nature (1988) [Pubmed]
  7. Tissue localization and chromosomal assignment of a serum protein that tracks the cystic fibrosis gene. van Heyningen, V., Hayward, C., Fletcher, J., McAuley, C. Nature (1985) [Pubmed]
  8. HIF1{alpha} delays premature senescence through the activation of MIF. Welford, S.M., Bedogni, B., Gradin, K., Poellinger, L., Broome Powell, M., Giaccia, A.J. Genes Dev. (2006) [Pubmed]
  9. CD44 Is the Signaling Component of the Macrophage Migration Inhibitory Factor-CD74 Receptor Complex. Shi, X., Leng, L., Wang, T., Wang, W., Du, X., Li, J., McDonald, C., Chen, Z., Murphy, J.W., Lolis, E., Noble, P., Knudson, W., Bucala, R. Immunity (2006) [Pubmed]
  10. Regulation of S100A8/A9 (calprotectin) binding to tumor cells by zinc ion and its implication for apoptosis-inducing activity. Nakatani, Y., Yamazaki, M., Chazin, W.J., Yui, S. Mediators of inflammation. (2005) [Pubmed]
  11. Pancreatic cancer-derived S-100A8 N-terminal peptide: A diabetes cause? Basso, D., Greco, E., Fogar, P., Pucci, P., Flagiello, A., Baldo, G., Giunco, S., Valerio, A., Navaglia, F., Zambon, C.F., Falda, A., Pedrazzoli, S., Plebani, M. Clin. Chim. Acta (2006) [Pubmed]
  12. Sex steroid regulation of macrophage migration inhibitory factor in normal and inflamed colon in the female rat. Houdeau, E., Moriez, R., Leveque, M., Salvador-Cartier, C., Waget, A., Leng, L., Bueno, L., Bucala, R., Fioramonti, J. Gastroenterology (2007) [Pubmed]
  13. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. Ryckman, C., Vandal, K., Rouleau, P., Talbot, M., Tessier, P.A. J. Immunol. (2003) [Pubmed]
  14. The two calcium-binding proteins, S100A8 and S100A9, are involved in the metabolism of arachidonic acid in human neutrophils. Kerkhoff, C., Klempt, M., Kaever, V., Sorg, C. J. Biol. Chem. (1999) [Pubmed]
  15. S100 and cytokine expression in caries. McLachlan, J.L., Sloan, A.J., Smith, A.J., Landini, G., Cooper, P.R. Infect. Immun. (2004) [Pubmed]
  16. Hyperzincaemia and hypercalprotectinaemia: a new disorder of zinc metabolism. Sampson, B., Fagerhol, M.K., Sunderkötter, C., Golden, B.E., Richmond, P., Klein, N., Kovar, I.Z., Beattie, J.H., Wolska-Kusnierz, B., Saito, Y., Roth, J. Lancet (2002) [Pubmed]
  17. Monosodium urate monohydrate crystals induce the release of the proinflammatory protein S100A8/A9 from neutrophils. Ryckman, C., Gilbert, C., de Médicis, R., Lussier, A., Vandal, K., Tessier, P.A. J. Leukoc. Biol. (2004) [Pubmed]
  18. Biochemical characterization of the murine S100A9 (MRP14) protein suggests that it is functionally equivalent to its human counterpart despite its low degree of sequence homology. Nacken, W., Sopalla, C., Pröpper, C., Sorg, C., Kerkhoff, C. Eur. J. Biochem. (2000) [Pubmed]
  19. Norepinephrine stimulates calprotectin expression in human monocytic cells. Kido, J., Hayashi, N., Kataoka, M., Shinohara, Y., Nagata, T. J. Periodont. Res. (2006) [Pubmed]
  20. S100A8 and S100A9 calcium-binding proteins: localization within normal and cyclosporin A-induced overgrowth gingiva. Echelard, S., Hoyaux, D., Hermans, M., Daelemans, P., Roth, J., Philippart, P., Pochet, R. Connect. Tissue Res. (2002) [Pubmed]
  21. Early recruitment of phagocytes contributes to the vascular inflammation of giant cell arteritis. Foell, D., Hernández-Rodríguez, J., Sánchez, M., Vogl, T., Cid, M.C., Roth, J. J. Pathol. (2004) [Pubmed]
  22. The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor kappa B and p38 mitogen-activated protein kinase in rheumatoid arthritis. Sunahori, K., Yamamura, M., Yamana, J., Takasugi, K., Kawashima, M., Yamamoto, H., Chazin, W.J., Nakatani, Y., Yui, S., Makino, H. Arthritis Res. Ther. (2006) [Pubmed]
  23. Interaction of S100A8/S100A9-arachidonic acid complexes with the scavenger receptor CD36 may facilitate fatty acid uptake by endothelial cells. Kerkhoff, C., Sorg, C., Tandon, N.N., Nacken, W. Biochemistry (2001) [Pubmed]
  24. Complex pattern of the myelo-monocytic differentiation antigens MRP8 and MRP14 during chronic airway inflammation. Roth, J., Teigelkamp, S., Wilke, M., Grün, L., Tümmler, B., Sorg, C. Immunobiology (1992) [Pubmed]
  25. Macrophage migration inhibitory factor in rheumatoid arthritis. Morand, E.F., Leech, M. Front. Biosci. (2005) [Pubmed]
  26. Control of fibroblast-like synoviocyte proliferation by macrophage migration inhibitory factor. Lacey, D., Sampey, A., Mitchell, R., Bucala, R., Santos, L., Leech, M., Morand, E. Arthritis Rheum. (2003) [Pubmed]
  27. Carboxylated glycans mediate colitis through activation of NF-kappa B. Srikrishna, G., Turovskaya, O., Shaikh, R., Newlin, R., Foell, D., Murch, S., Kronenberg, M., Freeze, H.H. J. Immunol. (2005) [Pubmed]
  28. Gene expression profiling in cluster headache: a pilot microarray study. Sj??strand, C., Duvefelt, K., Steinberg, A., Remahl, I.N., Waldenlind, E., Hillert, J. Headache (2006) [Pubmed]
  29. Transendothelial migration of 27E10+ human monocytes. Eue, I., Pietz, B., Storck, J., Klempt, M., Sorg, C. Int. Immunol. (2000) [Pubmed]
  30. Interaction between S100A8/A9 and annexin A6 is involved in the calcium-induced cell surface exposition of S100A8/A9. Bode, G., Lüken, A., Kerkhoff, C., Roth, J., Ludwig, S., Nacken, W. J. Biol. Chem. (2008) [Pubmed]
  31. Expression of surfactant protein-C, S100A8, S100A9, and B cell markers in renal allografts: investigation of the prognostic value. Eikmans, M., Roos-van Groningen, M.C., Sijpkens, Y.W., Ehrchen, J., Roth, J., Baelde, H.J., Bajema, I.M., de Fijter, J.W., de Heer, E., Bruijn, J.A. J. Am. Soc. Nephrol. (2005) [Pubmed]
  32. The analysis of S100A9 and S100A8 expression in matched sets of macroscopically normal colon mucosa and colorectal carcinoma: the S100A9 and S100A8 positive cells underlie and invade tumor mass. Stulík, J., Osterreicher, J., Koupilová, K., Knízek, n.u.l.l., Macela, A., Bures, J., Jandík, P., Langr, F., Dedic, K., Jungblut, P.R. Electrophoresis (1999) [Pubmed]
  33. Molecular basis of the complex formation between the two calcium-binding proteins S100A8 (MRP8) and S100A9 (MRP14). Leukert, N., Sorg, C., Roth, J. Biol. Chem. (2005) [Pubmed]
WikiGenes - Universities