The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

SureCN1532479     [2,3,4-trihydroxy-5- (hydroxymethyl)oxolan...

Synonyms: AC1Q6SXM, AR-1C5014, AC1L19V5, 1-o-phosphonohex-2-ulofuranose
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of D-fructose-1-phosphate

  • Hereditary fructose intolerance (HFI) is an inborn error of metabolism, inherited as an autosomal recessive disorder and caused by a decrease in the activity of fructose-1-phosphate aldolase (aldolase B) in affected individuals [1].
  • In addition, a sufficient amount of fructose-1-phosphate rapidly accumulated before the induction of hypoxia, and the linear production of lactate, during hypoxic incubation, indicated that cells synthesized ATP continuously [2].
  • Identification of a phosphoenolpyruvate:fructose phosphotransferase system (fructose-1-phosphate forming) in Listeria monocytogenes [3].

High impact information on D-fructose-1-phosphate


Biological context of D-fructose-1-phosphate

  • The system consists of enzyme I, HPr, and a fructose-specific enzyme II complex which generates fructose-1-phosphate as the cytoplasmic product of the PTS-catalyzed vectorial phosphorylation reaction [3].
  • Kinetics, also including fructose-1-P, were determined for all these enzymes [8].
  • The fru operon consists of three structural genes: fruB(MH), which encodes the enzyme IIIFru-modulator-FPr tridomain fusion protein of the PTS; fruK, which encodes fructose-1-phosphate kinase; and fruA, which encodes enzyme IIFru of the PTS [9].
  • Alkyl glycolamido phosphoric esters (P-O-CH2-CO-NH-(CH2)n-CH3) and alkyl monoglycolate phosphoric esters (P-O-CH2-CO-O-(CH2)n-CH3), which are analogs of the aldolase substrate fructose-1-phosphate, were synthesized and use for probing the active site of rabbit muscle aldolase [10].

Anatomical context of D-fructose-1-phosphate


Associations of D-fructose-1-phosphate with other chemical compounds


Gene context of D-fructose-1-phosphate


Analytical, diagnostic and therapeutic context of D-fructose-1-phosphate


  1. Molecular evidence for compound heterozygosity in hereditary fructose intolerance. Dazzo, C., Tolan, D.R. Am. J. Hum. Genet. (1990) [Pubmed]
  2. Fructose metabolism and cell survival in freshly isolated rat hepatocytes incubated under hypoxic conditions: proposals for potential clinical use. Lefebvre, V., Goffin, I., Buc-Calderon, P. Hepatology (1994) [Pubmed]
  3. Identification of a phosphoenolpyruvate:fructose phosphotransferase system (fructose-1-phosphate forming) in Listeria monocytogenes. Mitchell, W.J., Reizer, J., Herring, C., Hoischen, C., Saier, M.H. J. Bacteriol. (1993) [Pubmed]
  4. Regulation of rat proximal intestinal glycolytic enzyme activity by ileal perfusion with glucose. Espinoza, J., Clark, S.B., Hritz, A., Rosensweig, N.S. Gastroenterology (1976) [Pubmed]
  5. Phosphomannosyl receptors may participate in the adhesive interaction between lymphocytes and high endothelial venules. Stoolman, L.M., Tenforde, T.S., Rosen, S.D. J. Cell Biol. (1984) [Pubmed]
  6. Evidence that glucokinase regulatory protein is expressed and interacts with glucokinase in rat brain. Alvarez, E., Roncero, I., Chowen, J.A., Vázquez, P., Blázquez, E. J. Neurochem. (2002) [Pubmed]
  7. Glucose-induced glycogenesis in the liver involves the glucose-6-phosphate-dependent dephosphorylation of glycogen synthase. Cadefau, J., Bollen, M., Stalmans, W. Biochem. J. (1997) [Pubmed]
  8. Chloroplast class I and class II aldolases are bifunctional for fructose-1,6-biphosphate and sedoheptulose-1,7-biphosphate cleavage in the Calvin cycle. Flechner, A., Gross, W., Martin, W.F., Schnarrenberger, C. FEBS Lett. (1999) [Pubmed]
  9. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium. Feldheim, D.A., Chin, A.M., Nierva, C.T., Feucht, B.U., Cao, Y.W., Xu, Y.F., Sutrina, S.L., Saier, M.H. J. Bacteriol. (1990) [Pubmed]
  10. An exploration of the binding site of aldolase using alkyl glycolamido phosphoric esters and alkyl monoglycolate phosphoric esters. Ogata, H., Fukuda, T., Yamamoto, K., Funakoshi, J., Takada, K., Yasue, N., Fujisaki, S., Kajigaeshi, S. Biochim. Biophys. Acta (1992) [Pubmed]
  11. Assessment of liver graft function after cold preservation using 31P and 23Na magnetic resonance spectroscopy. Orii, T., Ohkohchi, N., Satomi, S., Taguchi, Y., Mori, S., Miura, I. Transplantation (1992) [Pubmed]
  12. 13C n.m.r. studies of gluconeogenesis in rat liver suspensions and perfused mouse livers. Cohen, S.M., Shulman, R.G. Philos. Trans. R. Soc. Lond., B, Biol. Sci. (1980) [Pubmed]
  13. Studies on fructose metabolism in cultured astroglial cells and control hepatocytes: lack of fructokinase activity and immunoreactivity in astrocytes. Bergbauer, K., Dringen, R., Verleysdonk, S., Gebhardt, R., Hamprecht, B., Wiesinger, H. Dev. Neurosci. (1996) [Pubmed]
  14. Activation of osteoblast insulin-like growth factor-II/cation-independent mannose-6-phosphate receptors by specific phosphorylated sugars and antibodies induce insulin-like growth factor-II effects. Ishibe, M., Rosier, R.N., Puzas, J.E. Endocr. Res. (1991) [Pubmed]
  15. Receptor-mediated endocytosis of fibroblast beta-glucuronidase by peritoneal macrophages. Diment, S., Dean, M.F. Biochim. Biophys. Acta (1983) [Pubmed]
  16. Immediate and late effects of premature weaning of rats to diets containing starch or low levels of sucrose. Angel, J.F., Back, D.W. J. Nutr. (1981) [Pubmed]
  17. pH and compartmentation of isolated perfused rat liver studied by 31P and 19F NMR. Thoma, W.J., Uğurbil, K. NMR in biomedicine. (1988) [Pubmed]
  18. Different glycolytic pathways for glucose and fructose in the halophilic archaeon Halococcus saccharolyticus. Johnsen, U., Selig, M., Xavier, K.B., Santos, H., Schönheit, P. Arch. Microbiol. (2001) [Pubmed]
  19. D-tagatose, a stereoisomer of D-fructose, increases blood uric acid concentration. Buemann, B., Toubro, S., Holst, J.J., Rehfeld, J.F., Bibby, B.M., Astrup, A. Metab. Clin. Exp. (2000) [Pubmed]
  20. Co-localization of the ketohexokinase and glucokinase regulator genes to a 500-kb region of chromosome 2p23. Hayward, B.E., Fantes, J.A., Warner, J.P., Intody, S., Leek, J.P., Markham, A.F., Bonthron, D.T. Mamm. Genome (1996) [Pubmed]
  21. Regulation of glucokinase by a fructose-1-phosphate-sensitive protein in pancreatic islets. Malaisse, W.J., Malaisse-Lagae, F., Davies, D.R., Vandercammen, A., Van Schaftingen, E. Eur. J. Biochem. (1990) [Pubmed]
  22. Does regulatory protein play a role in glucokinase localization? Reitz, F.B., Pagliaro, L. Horm. Metab. Res. (1997) [Pubmed]
  23. Regulation of expression of the ethanol dehydrogenase gene (adhE) in Escherichia coli by catabolite repressor activator protein Cra. Mikulskis, A., Aristarkhov, A., Lin, E.C. J. Bacteriol. (1997) [Pubmed]
  24. Association of bovine sperm aldolase with sperm subcellular components. Gillis, B.A., Tamblyn, T.M. Biol. Reprod. (1984) [Pubmed]
  25. Investigations of the enzymes involved in the fructose breakdown in the cattle lens. Ohrloff, C., Zierz, S., Hockwin, O. Ophthalmic Res. (1982) [Pubmed]
WikiGenes - Universities