The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Oxydiphenyl     phenoxybenzene

Synonyms: Diphenyloxid, Oxydibenzene, Diphenylether, Oxybisbenzene, Diphenylaether, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of phenoxybenzene

 

High impact information on phenoxybenzene

 

Chemical compound and disease context of phenoxybenzene

 

Biological context of phenoxybenzene

 

Anatomical context of phenoxybenzene

  • The data suggest that thyroid hormones and derivatives have LDL-antioxidant properties, their importance being related to their 4'-hydroxy diphenyl ether structure and depending upon the nature and the position of substituents in this structure [19].
  • Induction of hepatic peroxisome proliferation in mice by lactofen, a diphenyl ether herbicide [20].
  • This study investigates the effects of the pentabrominated diphenyl ether mixture, DE-71, on human neutrophil granulocytes in vitro [17].
  • There was no induction or inhibition of EROD in DE71 exposure to both gill epithelia and hepatocytes [21].
  • Concentrations of the flame retardant 2,2',4,4'-tetrabrominated diphenyl ether (2,2',4,4'-TeBDE) in the adipose tissue of 77 individuals from Sweden were determined [22].
 

Associations of phenoxybenzene with other chemical compounds

 

Gene context of phenoxybenzene

 

Analytical, diagnostic and therapeutic context of phenoxybenzene

  • Transmission electron microscopy (TEM) images of the single-component gels in diphenyl ether revealed that they consist of a fibrous network, while the dual-component gel presents a novel, helical, fibrous-bundle structure [33].
  • In the present study, the tissue distribution of [14C]-labelled 2,2',4,4'-tetrabrominated diphenyl ether (PBDE 47) and its possible metabolites was investigated after dietary exposure in pike (Esox lucius) using whole-body autoradiography [34].
  • T(3)-induced tail tip regression was antagonized by 2,2',3,3',4,4',5,5',6-nona brominated diphenyl ether (BDE206) and potentiated by hexabromocyclododecane (HBCD) in a concentration dependent manner, which was consistent with results obtained with a in vitro T(3)-dependent proliferation bioassay termed the T-screen [35].
  • HPLC isolation and NMR structure elucidation of the most prominent octabromo isomer in technical octabromo diphenyl ether [36].

References

  1. Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3. Schmidt, S., Wittich, R.M., Erdmann, D., Wilkes, H., Francke, W., Fortnagel, P. Appl. Environ. Microbiol. (1992) [Pubmed]
  2. Molecular cloning and expression of an Erwinia sp. gene encoding diphenyl ether cleavage in Escherichia coli. Liaw, H.J., Srinivasan, V.R. Appl. Environ. Microbiol. (1989) [Pubmed]
  3. Repeated inhalation toxicity of diphenyl oxide in experimental animals. Hefner, R.E., Leong, B.K., Kociba, R.J., Gehring, P.J. Toxicol. Appl. Pharmacol. (1975) [Pubmed]
  4. Detection of mutagenicity of diphenyl ether herbicides in Salmonella typhimurium YG1026 and YG1021. Oguri, A., Karakama, K., Arakawa, N., Sugimura, T., Wakabayashi, K. Mutat. Res. (1995) [Pubmed]
  5. Expression of an Erwinia sp. gene encoding diphenyl ether cleavage in Escherichia coli and an isolated Acinetobacter strain PE7. Liaw, H.J., Srinivasan, V.R. Appl. Microbiol. Biotechnol. (1990) [Pubmed]
  6. Acylation stabilizes a protease-resistant conformation of protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. Arnould, S., Takahashi, M., Camadro, J.M. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  7. Kinetic studies on protoporphyrinogen oxidase inhibition by diphenyl ether herbicides. Camadro, J.M., Matringe, M., Scalla, R., Labbe, P. Biochem. J. (1991) [Pubmed]
  8. Pulcherosine, a novel tyrosine-derived, trivalent cross-linking amino acid from the fertilization envelope of sea urchin embryo. Nomura, K., Suzuki, N., Matsumoto, S. Biochemistry (1990) [Pubmed]
  9. Isodityrosine, a new cross-linking amino acid from plant cell-wall glycoprotein. Fry, S.C. Biochem. J. (1982) [Pubmed]
  10. Asymmetric hydrogenation of quinolines catalyzed by iridium complexes of BINOL-derived diphosphonites. Reetz, M.T., Li, X. Chem. Commun. (Camb.) (2006) [Pubmed]
  11. Cloning, sequence, and expression of mouse protoporphyrinogen oxidase. Dailey, T.A., Dailey, H.A., Meissner, P., Prasad, A.R. Arch. Biochem. Biophys. (1995) [Pubmed]
  12. Metabolism of 3-methyldiphenyl ether by Sphingomonas sp. SS31. Schmidt, S., Wittich, R.M., Fortnagel, P., Erdmann, D., Francke, W. FEMS Microbiol. Lett. (1992) [Pubmed]
  13. Lithocholic acid side-chain cleavage to produce 17-keto or 22-aldehyde steroids by Pseudomonas putida strain ST-491 grown in the presence of an organic solvent, diphenyl ether. Suzuki, Y., Doukyu, N., Aono, R. Biosci. Biotechnol. Biochem. (1998) [Pubmed]
  14. Characterisation of coupling products formed by biotransformation of biphenyl and diphenyl ether by the white rot fungus Pycnoporus cinnabarinus. Jonas, U., Hammer, E., Haupt, E.T., Schauer, F. Arch. Microbiol. (2000) [Pubmed]
  15. Gas-Phase Reactions of Brominated Diphenyl Ethers with OH Radicals. Raff, J.D., Hites, R.A. The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment & general theory. (2006) [Pubmed]
  16. Immunosuppressive and monooxygenase induction activities of polychlorinated diphenyl ether congeners in C57BL/6N mice: quantitative structure-activity relationships. Howie, L., Dickerson, R., Davis, D., Safe, S. Toxicol. Appl. Pharmacol. (1990) [Pubmed]
  17. A commercial mixture of the brominated flame retardant pentabrominated diphenyl ether (DE-71) induces respiratory burst in human neutrophil granulocytes in vitro. Reistad, T., Mariussen, E. Toxicol. Sci. (2005) [Pubmed]
  18. The toxicology of the three commercial polybrominated diphenyl oxide (ether) flame retardants. Hardy, M.L. Chemosphere (2002) [Pubmed]
  19. Effects of iodotyrosines, thyronines, iodothyroacetic acids and thyromimetic analogues on in vitro copper-induced oxidation of low-density lipoproteins. Chomard, P., Seguin, C., Loireau, A., Autissier, N., Artur, Y. Biochem. Pharmacol. (1998) [Pubmed]
  20. Induction of hepatic peroxisome proliferation in mice by lactofen, a diphenyl ether herbicide. Butler, E.G., Tanaka, T., Ichida, T., Maruyama, H., Leber, A.P., Williams, G.M. Toxicol. Appl. Pharmacol. (1988) [Pubmed]
  21. Primary cultured cells as sensitive in vitro model for assessment of toxicants-comparison to hepatocytes and gill epithelia. Zhou, B., Liu, C., Wang, J., Lam, P.K., Wu, R.S. Aquat. Toxicol. (2006) [Pubmed]
  22. Concentrations of the flame retardant 2,2',4,4'-tetrabrominated diphenyl ether in human adipose tissue in Swedish persons and the risk for non-Hodgkin's lymphoma. Hardell, L., Lindström, G., van Bavel, B., Wingfors, H., Sundelin, E., Liljegren, G. Oncol. Res. (1998) [Pubmed]
  23. Effects of a diphenyl ether-type herbicide, chlornitrofen, and its amino derivative on androgen and estrogen receptor activities. Kojima, H., Iida, M., Katsura, E., Kanetoshi, A., Hori, Y., Kobayashi, K. Environ. Health Perspect. (2003) [Pubmed]
  24. Purification of and kinetic studies on a cloned protoporphyrinogen oxidase from the aerobic bacterium Bacillus subtilis. Corrigall, A.V., Siziba, K.B., Maneli, M.H., Shephard, E.G., Ziman, M., Dailey, T.A., Dailey, H.A., Kirsch, R.E., Meissner, P.N. Arch. Biochem. Biophys. (1998) [Pubmed]
  25. Biotransformation of biarylic compounds by yeasts of the genus trichosporon. Sietmann, R., Hammer, E., Schauer, F. Syst. Appl. Microbiol. (2002) [Pubmed]
  26. Dioxins in aquatic sediment and soil in the Kanto region of Japan: major sources and their contributions. Sakurai, T. Environ. Sci. Technol. (2003) [Pubmed]
  27. Liver preneoplastic changes in mice treated with the herbicide fomesafen. Krijt, J., Stránská, P., Sanitrák, J., Chlumská, A., Fakan, F. Human & experimental toxicology. (1999) [Pubmed]
  28. Cloning and characterization of the yeast HEM14 gene coding for protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. Camadro, J.M., Labbe, P. J. Biol. Chem. (1996) [Pubmed]
  29. Characterization of [3H]acifluorfen binding to purified pea etioplasts, and evidence that protoporphyrinogen oxidase specifically binds acifluorfen. Matringe, M., Mornet, R., Scalla, R. Eur. J. Biochem. (1992) [Pubmed]
  30. Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen. Lee, H.J., Lee, S.B., Chung, J.S., Han, S.U., Han, O., Guh, J.O., Jeon, J.S., An, G., Back, K. Plant Cell Physiol. (2000) [Pubmed]
  31. Lipase-catalyzed polycondensations: effect of substrates and solvent on chain formation, dispersity, and end-group structure. Mahapatro, A., Kalra, B., Kumar, A., Gross, R.A. Biomacromolecules (2003) [Pubmed]
  32. A point mutation of valine-311 to methionine in Bacillus subtilis protoporphyrinogen oxidase does not greatly increase resistance to the diphenyl ether herbicide oxyfluorfen. Jeong, E., Houn, T., Kuk, Y., Kim, E.S., Chandru, H.K., Baik, M., Back, K., Guh, J.O., Han, O. Bioorg. Chem. (2003) [Pubmed]
  33. Charge-transfer phenomena in novel, dual-component, sugar-based organogels. Friggeri, A., Gronwald, O., van Bommel, K.J., Shinkai, S., Reinhoudt, D.N. J. Am. Chem. Soc. (2002) [Pubmed]
  34. Tissue distribution of 2,2',4,4'-tetrabromo[14C]diphenyl ether ([14C]-PBDE 47) in pike (Esox lucius) after dietary exposure--a time series study using whole body autoradiography. Burreau, S., Broman, D., Orn, U. Chemosphere (2000) [Pubmed]
  35. Disruption of thyroid hormone-mediated Xenopus laevis tadpole tail tip regression by hexabromocyclododecane (HBCD) and 2,2',3,3',4,4',5,5',6-nona brominated diphenyl ether (BDE206). Schriks, M., Zvinavashe, E., David Furlow, J., Murk, A.J. Chemosphere (2006) [Pubmed]
  36. HPLC isolation and NMR structure elucidation of the most prominent octabromo isomer in technical octabromo diphenyl ether. Gaul, S., Lehnert, K., Conrad, J., Vetter, W. Journal of separation science. (2005) [Pubmed]
 
WikiGenes - Universities