The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

2,4,5-T     2-(2,4,5- trichlorophenoxy)ethanoic acid

Synonyms: Brushtox, Crossbow, Trioxone, Arbokan, Phortox, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of 2,4,5-trichlorophenoxyacetic acid

 

Psychiatry related information on 2,4,5-trichlorophenoxyacetic acid

 

High impact information on 2,4,5-trichlorophenoxyacetic acid

 

Chemical compound and disease context of 2,4,5-trichlorophenoxyacetic acid

 

Biological context of 2,4,5-trichlorophenoxyacetic acid

 

Anatomical context of 2,4,5-trichlorophenoxyacetic acid

 

Associations of 2,4,5-trichlorophenoxyacetic acid with other chemical compounds

 

Gene context of 2,4,5-trichlorophenoxyacetic acid

 

Analytical, diagnostic and therapeutic context of 2,4,5-trichlorophenoxyacetic acid

  • Spectrophotometry and gas chromatography reveal various intermediates during growth of the culture with 2,4,5-T [28].
  • The technique of plasmid-assisted molecular breeding has led to the development of bacterial strains capable of totally degrading 2,4,5-T by using it as their sole source of carbon at high concentrations (greater than 1 mg/ml) [28].
  • A clinical epidemiologic study was conducted to determine the long-term health effects of workplace exposure to the process of manufacturing the herbicide (2,4,5-trichlorophenoxy)acetic acid including contaminants such as 2,3,7,8-tetrachlorodibenzo-rho-dioxin [29].
  • A randomized biomechanical study was carried out by installing 13-mm-long meniscus arrows into fresh porcine menisci with the Crossbow and with the standard manual inserter trocar system [30].
  • Reversed-phase high-performance liquid chromatography (HPLC) analysis of bile indicated that more than 85% of compound excreted in bile was unchanged 2,4,5-T [31].

References

  1. Aerial spraying of 2,4,5-T and human birth malformations: an epidemiological investigation. Hanify, J.A., Metcalf, P., Nobbs, C.L., Worsley, K.J. Science (1981) [Pubmed]
  2. 2,4,5-T, trichlorophenol, and soft tissue sarcoma. Honchar, P.A., Halperin, W.E. Lancet (1981) [Pubmed]
  3. Peroxisome proliferation and modulation of rat liver carcinogenesis by 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, perfluorooctanoic acid and nafenopin. Abdellatif, A.G., Préat, V., Vamecq, J., Nilsson, R., Roberfroid, M. Carcinogenesis (1990) [Pubmed]
  4. Cloning and characterization of a chromosomal DNA region required for growth on 2,4,5-T by Pseudomonas cepacia AC1100. Haugland, R.A., Sangodkar, U.M., Sferra, P.R., Chakrabarty, A.M. Gene (1991) [Pubmed]
  5. Substrate diversity and expression of the 2,4,5-trichlorophenoxyacetic acid oxygenase from Burkholderia cepacia AC1100. Danganan, C.E., Shankar, S., Ye, R.W., Chakrabarty, A.M. Appl. Environ. Microbiol. (1995) [Pubmed]
  6. Conditioned taste aversion to saccharin induced by 2, 4, 5-trichlorophenoxyacetic acid in albino rats. Sjödén, P.O., Archer, T. Physiol. Behav. (1977) [Pubmed]
  7. Bioavailability of dioxin in soil from a 2,4,5-T manufacturing site. Umbreit, T.H., Hesse, E.J., Gallo, M.A. Science (1986) [Pubmed]
  8. Serum 2,3,7,8-tetrachlorodibenzo-p-dioxin levels of New Zealand pesticide applicators and their implication for cancer hypotheses. Smith, A.H., Patterson, D.G., Warner, M.L., MacKenzie, R., Needham, L.L. J. Natl. Cancer Inst. (1992) [Pubmed]
  9. Soft tissue sarcoma and exposure to phenoxyherbicides and chlorophenols in New Zealand. Smith, A.H., Pearce, N.E., Fisher, D.O., Giles, H.J., Teague, C.A., Howard, J.K. J. Natl. Cancer Inst. (1984) [Pubmed]
  10. Clinical and environmental isolates of Burkholderia cepacia exhibit differential cytotoxicity towards macrophages and mast cells. Melnikov, A., Zaborina, O., Dhiman, N., Prabhakar, B.S., Chakrabarty, A.M., Hendrickson, W. Mol. Microbiol. (2000) [Pubmed]
  11. Induction of the multispecific organic anion transporter (cMoat/mrp2) gene and biliary glutathione secretion by the herbicide 2,4,5-trichlorophenoxyacetic acid in the mouse liver. Wielandt, A.M., Vollrath, V., Manzano, M., Miranda, S., Accatino, L., Chianale, J. Biochem. J. (1999) [Pubmed]
  12. Degradation of the chlorinated phenoxyacetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures. Haugland, R.A., Schlemm, D.J., Lyons, R.P., Sferra, P.R., Chakrabarty, A.M. Appl. Environ. Microbiol. (1990) [Pubmed]
  13. Purification of hydroxyquinol 1,2-dioxygenase and maleylacetate reductase: the lower pathway of 2,4,5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100. Daubaras, D.L., Saido, K., Chakrabarty, A.M. Appl. Environ. Microbiol. (1996) [Pubmed]
  14. Metabolism of Halophenols by 2,4,5-trichlorophenoxyacetic acid-degrading Pseudomonas cepacia. Karns, J.S., Kilbane, J.J., Duttagupta, S., Chakrabarty, A.M. Appl. Environ. Microbiol. (1983) [Pubmed]
  15. Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp. strain HW13 isolated from a pristine environment. Kitagawa, W., Takami, S., Miyauchi, K., Masai, E., Kamagata, Y., Tiedje, J.M., Fukuda, M. J. Bacteriol. (2002) [Pubmed]
  16. Sequence analysis of a gene cluster involved in metabolism of 2,4,5-trichlorophenoxyacetic acid by Burkholderia cepacia AC1100. Daubaras, D.L., Hershberger, C.D., Kitano, K., Chakrabarty, A.M. Appl. Environ. Microbiol. (1995) [Pubmed]
  17. Overexpression of mdr2 gene by peroxisome proliferators in the mouse liver. Miranda, S., Vollrath, V., Wielandt, A.M., Loyola, G., Bronfman, M., Chianale, J. J. Hepatol. (1997) [Pubmed]
  18. Induction of cytosolic and microsomal epoxide hydrolases and proliferation of peroxisomes and mitochondria in mouse liver after dietary exposure to p-chlorophenoxyacetic acid, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid. Lundgren, B., Meijer, J., DePierre, J.W. Biochem. Pharmacol. (1987) [Pubmed]
  19. Transport of 2,4,5-trichlorophenoxyacetic acid across the blood-cerebrospinal fluid barrier of the rabbit. Kim, C.S., Pritchard, J.B. J. Pharmacol. Exp. Ther. (1993) [Pubmed]
  20. Trace analysis of 2,4,5-trichlorophenoxyacetic acid, its glycineamide, and their alkaline hydrolyzable conjugates in mouse blood, urine, and feces. Nony, C.R., Bowman, M.C., Holder, C.L., Young, J.F., Oller, W.L. Journal of pharmaceutical sciences. (1976) [Pubmed]
  21. Overview of potential mutagenic problems posed by some pesticides and their trace impurities. Fishbein, L. Environ. Health Perspect. (1978) [Pubmed]
  22. Use of the Drosophila wing spot test in the genotoxicity testing of different herbicides. Kaya, B., Creus, A., Yanikoğlu, A., Cabré, O., Marcos, R. Environ. Mol. Mutagen. (2000) [Pubmed]
  23. Correlation between the activation of Neu tyrosine kinase and promotion of foci formation induced by selected organochlorine compounds in the MCF-7 model system. Hatakeyama, M., Matsumura, F. J. Biochem. Mol. Toxicol. (1999) [Pubmed]
  24. Effect of peroxisome proliferators on glutathione-dependent sulphobromophthalein excretion. James, S.I., Ahokas, J.T. Xenobiotica (1992) [Pubmed]
  25. Induction of cytosolic and microsomal epoxide hydrolases in mouse liver by peroxisome proliferators, with special emphasis on structural analogues of 2-ethylhexanoic acid. Lundgren, B., Meijer, J., Birberg, W., Pilotti, A., Depierre, J.W. Chem. Biol. Interact. (1988) [Pubmed]
  26. Retarded development of fetal renal alkaline phosphatase in mice given 2,4,5-trichlorophenoxyacetic acid. Highman, B., Gaines, T.B., Schumacher, H.J. Journal of toxicology and environmental health. (1977) [Pubmed]
  27. Effect of exposure of Pieris brassicae larvae to 2,4,5-trichlorophenoxyacetic acid on the natural antibacterial activity of serum. Jones, R.D., Rowley, A.F., Ratcliffe, N.A. J. Invertebr. Pathol. (1989) [Pubmed]
  28. Plasmid-assisted molecular breeding: new technique for enhanced biodegradation of persistent toxic chemicals. Kellogg, S.T., Chatterjee, D.K., Chakrabarty, A.M. Science (1981) [Pubmed]
  29. Human health effects of 2,4,5-T and its toxic contaminants. Suskind, R.R., Hertzberg, V.S. JAMA (1984) [Pubmed]
  30. A novel inserter instrument (Crossbow) for installation of self-reinforced bioabsorbable arrows into meniscus tissue. Törmälä, P., Karhi, O., Koho, P., Tamminmäki, M. Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA. (2000) [Pubmed]
  31. Biliary excretion of 2,4,5-trichlorophenoxyacetic acid in the rat. Eaton, D.L. Toxicol. Lett. (1982) [Pubmed]
 
WikiGenes - Universities