The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

Fglu  -  fasting glucose

Mus musculus

Synonyms: Fgq1
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Fglu


High impact information on Fglu

  • However, LGsKO mice maintained normal fasting glucose and insulin levels, probably due to prolonged breakdown of glycogen stores and possibly increased extrahepatic gluconeogenesis [6].
  • Fraction CD has these characteristics: (i) It induces glucose intolerance in fasting female ob/ob mice when injected subcutaneously in a divided dose, 15 min before and concurrently with glucose; mice injected with sufficient peptide exhibit elevated fasting glucose levels as long as 7 months after a single glucose tolerance test [7].
  • A strong negative correlation was observed between lipin mRNA levels and fasting glucose and insulin levels, as well as an indicator of insulin resistance (HOMA-IR), in both mice and humans [8].
  • Serum was collected for measurement of insulin, adiponectin, fasting glucose, lipids, and aminotransferase concentrations [9].
  • Despite altered regulation of insulin signaling, Pten(+/-) heterodeficient standard diet-fed mice, approximately 4 months old, exhibit normal fasting glucose and insulin levels [10].

Biological context of Fglu


Anatomical context of Fglu


Associations of Fglu with chemical compounds


Other interactions of Fglu


Analytical, diagnostic and therapeutic context of Fglu


  1. Insulin resistance and type 2 diabetes in high-fat-fed mice are linked to high glycotoxin intake. Sandu, O., Song, K., Cai, W., Zheng, F., Uribarri, J., Vlassara, H. Diabetes (2005) [Pubmed]
  2. Transgenic mice with increased hexosamine flux specifically targeted to beta-cells exhibit hyperinsulinemia and peripheral insulin resistance. Tang, J., Neidigh, J.L., Cooksey, R.C., McClain, D.A. Diabetes (2000) [Pubmed]
  3. Expression of constitutively activated Gialpha2 in vivo ameliorates streptozotocin-induced diabetes. Zheng, X.L., Guo, J., Wang, H., Malbon, C.C. J. Biol. Chem. (1998) [Pubmed]
  4. Partial gene deletion of heart-type fatty acid-binding protein limits the severity of dietary-induced insulin resistance. Shearer, J., Fueger, P.T., Bracy, D.P., Wasserman, D.H., Rottman, J.N. Diabetes (2005) [Pubmed]
  5. Fetal and neonatal exposure to AZT and low-protein diet affects glucose homeostasis: a model with implications for AIDS prevention. Morten, K., Field, P., Ashley, N., Williams, K.A., Harris, D., Hartley, M., Clark, A., Poulton, J. Am. J. Physiol. Endocrinol. Metab. (2005) [Pubmed]
  6. Increased glucose tolerance and reduced adiposity in the absence of fasting hypoglycemia in mice with liver-specific Gs alpha deficiency. Chen, M., Gavrilova, O., Zhao, W.Q., Nguyen, A., Lorenzo, J., Shen, L., Nackers, L., Pack, S., Jou, W., Weinstein, L.S. J. Clin. Invest. (2005) [Pubmed]
  7. Diabetogenic peptide from human growth hormone: partial purification from peptic digest and long-term action in ob/ob mice. Lostroh, A.J., Krahl, M.E. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  8. Cross-species analyses implicate Lipin 1 involvement in human glucose metabolism. Suviolahti, E., Reue, K., Cantor, R.M., Phan, J., Gentile, M., Naukkarinen, J., Soro-Paavonen, A., Oksanen, L., Kaprio, J., Rissanen, A., Salomaa, V., Kontula, K., Taskinen, M.R., Pajukanta, P., Peltonen, L. Hum. Mol. Genet. (2006) [Pubmed]
  9. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Ding, X., Saxena, N.K., Lin, S., Gupta, N., Anania, F.A. Hepatology (2006) [Pubmed]
  10. Decreased hepatic futile cycling compensates for increased glucose disposal in the pten heterodeficient mouse. Xu, J., Gowen, L., Raphalides, C., Hoyer, K.K., Weinger, J.G., Renard, M., Troke, J.J., Vaitheesyaran, B., Lee, W.N., Saad, M.F., Sleeman, M.W., Teitell, M.A., Kurland, I.J. Diabetes (2006) [Pubmed]
  11. Genetic analysis of non-insulin-dependent diabetes mellitus in KK and KK-Ay mice. Suto, J., Matsuura, S., Imamura, K., Yamanaka, H., Sekikawa, K. Eur. J. Endocrinol. (1998) [Pubmed]
  12. Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Rajala, M.W., Qi, Y., Patel, H.R., Takahashi, N., Banerjee, R., Pajvani, U.B., Sinha, M.K., Gingerich, R.L., Scherer, P.E., Ahima, R.S. Diabetes (2004) [Pubmed]
  13. Increased insulin sensitivity in Gsalpha knockout mice. Yu, S., Castle, A., Chen, M., Lee, R., Takeda, K., Weinstein, L.S. J. Biol. Chem. (2001) [Pubmed]
  14. Hypertriglyceridemia in lecithin-cholesterol acyltransferase-deficient mice is associated with hepatic overproduction of triglycerides, increased lipogenesis, and improved glucose tolerance. Ng, D.S., Xie, C., Maguire, G.F., Zhu, X., Ugwu, F., Lam, E., Connelly, P.W. J. Biol. Chem. (2004) [Pubmed]
  15. Evidence for leptin regulation of food intake in humans. Larsson, H., Elmståhl, S., Berglund, G., Ahrén, B. J. Clin. Endocrinol. Metab. (1998) [Pubmed]
  16. Increased plasma S100A12 (EN-RAGE) levels in patients with type 2 diabetes. Kosaki, A., Hasegawa, T., Kimura, T., Iida, K., Hitomi, J., Matsubara, H., Mori, Y., Okigaki, M., Toyoda, N., Masaki, H., Inoue-Shibata, M., Nishikawa, M., Iwasaka, T. J. Clin. Endocrinol. Metab. (2004) [Pubmed]
  17. Metformin-like effect of Salvia officinalis (common sage): is it useful in diabetes prevention? Lima, C.F., Azevedo, M.F., Araujo, R., Fernandes-Ferreira, M., Pereira-Wilson, C. Br. J. Nutr. (2006) [Pubmed]
  18. Effect of chronic metformin treatment of hepatic and muscle glycogen metabolism in KK mice. Reddi, A.S., Jyothirmayi, G.N. Biochem. Med. Metab. Biol. (1992) [Pubmed]
  19. Activation of the hexosamine signaling pathway in adipose tissue results in decreased serum adiponectin and skeletal muscle insulin resistance. Hazel, M., Cooksey, R.C., Jones, D., Parker, G., Neidigh, J.L., Witherbee, B., Gulve, E.A., McClain, D.A. Endocrinology (2004) [Pubmed]
  20. Reduction of glycemic and lipid levels in db/db diabetic mice by psyllium plant fiber. Watters, K., Blaisdell, P. Diabetes (1989) [Pubmed]
  21. Are the binding and degradation of low density lipoprotein altered in Type 2 (non-insulin-dependent) diabetes mellitus? Kraemer, F.B., Chen, Y.D., Cheung, R.M., Reaven, G.M. Diabetologia (1982) [Pubmed]
  22. Effects of statins on the adipocyte maturation and expression of glucose transporter 4 (SLC2A4): implications in glycaemic control. Nakata, M., Nagasaka, S., Kusaka, I., Matsuoka, H., Ishibashi, S., Yada, T. Diabetologia (2006) [Pubmed]
  23. Role of aquaporin-7 in the pathophysiological control of fat accumulation in mice. Rodríguez, A., Catalán, V., Gómez-Ambrosi, J., Frühbeck, G. FEBS Lett. (2006) [Pubmed]
  24. Studies with apolipoprotein A-II transgenic mice indicate a role for HDLs in adiposity and insulin resistance. Castellani, L.W., Goto, A.M., Lusis, A.J. Diabetes (2001) [Pubmed]
  25. Heterozygous knockout of the IRS-1 gene in mice enhances obesity-linked insulin resistance: a possible model for the development of type 2 diabetes. Shirakami, A., Toyonaga, T., Tsuruzoe, K., Shirotani, T., Matsumoto, K., Yoshizato, K., Kawashima, J., Hirashima, Y., Miyamura, N., Kahn, C.R., Araki, E. J. Endocrinol. (2002) [Pubmed]
  26. Relative hypoglycemia and hyperinsulinemia in mice with heterozygous lipoprotein lipase (LPL) deficiency. Islet LPL regulates insulin secretion. Marshall, B.A., Tordjman, K., Host, H.H., Ensor, N.J., Kwon, G., Marshall, C.A., Coleman, T., McDaniel, M.L., Semenkovich, C.F. J. Biol. Chem. (1999) [Pubmed]
  27. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Koo, S.H., Flechner, L., Qi, L., Zhang, X., Screaton, R.A., Jeffries, S., Hedrick, S., Xu, W., Boussouar, F., Brindle, P., Takemori, H., Montminy, M. Nature (2005) [Pubmed]
  28. Effect of hyperglycemia and hyperlipidemia on atherosclerosis in LDL receptor-deficient mice: establishment of a combined model and association with heat shock protein 65 immunity. Keren, P., George, J., Shaish, A., Levkovitz, H., Janakovic, Z., Afek, A., Goldberg, I., Kopolovic, J., Keren, G., Harats, D. Diabetes (2000) [Pubmed]
  29. Targeted disruption of the tumor necrosis factor-alpha gene: metabolic consequences in obese and nonobese mice. Ventre, J., Doebber, T., Wu, M., MacNaul, K., Stevens, K., Pasparakis, M., Kollias, G., Moller, D.E. Diabetes (1997) [Pubmed]
  30. Reversal of diet-induced obesity and diabetes in C57BL/6J mice. Parekh, P.I., Petro, A.E., Tiller, J.M., Feinglos, M.N., Surwit, R.S. Metab. Clin. Exp. (1998) [Pubmed]
  31. The effect of Rhazya stricta on glucose homeostasis in normal and streptozotocin diabetic rats. Wasfi, I.A., Bashir, A.K., Amiri, M.H., Abdalla, A.A. Journal of ethnopharmacology. (1994) [Pubmed]
WikiGenes - Universities