The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Fabp3  -  fatty acid binding protein 3, muscle and...

Mus musculus

Synonyms: Fabph-1, Fabph-4, Fabph1, Fabph4, Fatty acid-binding protein 3, ...
 
 
 

Disease relevance of Fabp3

 

High impact information on Fabp3

  • The heart fatty acid-binding protein (HFABP) is a member of a family of binding proteins with distinct tissue distributions and diverse roles in fatty acid metabolism, trafficking, and signaling [6].
  • We used transient and permanent transfections in ventricular myocytes, skeletal myocytes, and nonmyocytic cells to map regulatory elements in the HFABP promoter, and audited results in transgenic mice [6].
  • These findings provide a physiological demonstration of a crucial role of H-FABP in uptake and oxidation of LCFAs in cardiac muscle cells and indicate that in H-FABP(-/-) mice the diminished contribution of LCFAs to cardiac energy production is, at least in part, compensated for by an increase in glucose oxidation [7].
  • Heart-type fatty acid binding protein (H-FABP), abundantly expressed in cardiac myocytes, has been postulated to facilitate the cardiac uptake of long-chain fatty acids (LCFAs) and to promote their intracellular trafficking to sites of metabolic conversion [7].
  • Mice with a disrupted H-FABP gene were recently shown to have elevated plasma LCFA levels, decreased cardiac deposition of a LCFA analogue, and increased cardiac deoxyglucose uptake, which qualitatively establishes a requirement for H-FABP in cardiac LCFA utilization [7].
 

Chemical compound and disease context of Fabp3

 

Biological context of Fabp3

 

Anatomical context of Fabp3

 

Associations of Fabp3 with chemical compounds

  • We found that further activation of PPARgamma could 'heal' the E/H-FABP double-ko effect in these TII cells as transport and utilisation of labelled palmitic acid restored a wt phenocopy [16].
  • We tested the hypothesis that H-FABP facilitates increases in LCFA flux present in glucose-intolerant states and that a partial reduction in the amount of this protein would compensate for all or part of the impairment [2].
  • We, therefore, examined whether the acceptor membrane structure and lipid composition regulate the rate of anthroyloxy-labeled palmitate (2AP) transfer from A- and H-FABP, using a fluorescence resonance energy transfer assay [15].
  • In addition, the rate of 2AP transfer from A- and H-FABP was enhanced by unsaturation of the phosphatidylcholine acyl chains and was slowed by the presence of cholesterol or sphingomyelin in the acceptor membranes [15].
  • Nevertheless, acrylamide quenching experiments indicate that ffa bound to H-FABP are more accessible to the aqueous environment than are A-FABP-bound ffa.(ABSTRACT TRUNCATED AT 250 WORDS)[17]
 

Other interactions of Fabp3

 

Analytical, diagnostic and therapeutic context of Fabp3

References

  1. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. Binas, B., Danneberg, H., McWhir, J., Mullins, L., Clark, A.J. FASEB J. (1999) [Pubmed]
  2. Partial gene deletion of heart-type fatty acid-binding protein limits the severity of dietary-induced insulin resistance. Shearer, J., Fueger, P.T., Bracy, D.P., Wasserman, D.H., Rottman, J.N. Diabetes (2005) [Pubmed]
  3. Heart-type fatty acid-binding protein reciprocally regulates glucose and fatty acid utilization during exercise. Shearer, J., Fueger, P.T., Rottman, J.N., Bracy, D.P., Binas, B., Wasserman, D.H. Am. J. Physiol. Endocrinol. Metab. (2005) [Pubmed]
  4. Fatty acid metabolism in human breast cancer cells (MCF7) transfected with heart-type fatty acid binding protein. Buhlmann, C., Börchers, T., Pollak, M., Spener, F. Mol. Cell. Biochem. (1999) [Pubmed]
  5. Effect of a mammary-derived growth inhibitor on the expression of the oncogenes c-fos, c-myc and c-ras. Lehmann, W., Strauss, M., Kiessling, U., Graetz, H., Koberling, A., Langen, P. FEBS Lett. (1989) [Pubmed]
  6. A concise promoter region of the heart fatty acid-binding protein gene dictates tissue-appropriate expression. Qian, Q., Kuo, L., Yu, Y.T., Rottman, J.N. Circ. Res. (1999) [Pubmed]
  7. Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Schaap, F.G., Binas, B., Danneberg, H., van der Vusse, G.J., Glatz, J.F. Circ. Res. (1999) [Pubmed]
  8. Suppression of mammary-derived growth inhibitor gene expression by growth hormone and insulin-like growth factor I. Huynh, H., Beamer, W. Int. J. Oncol. (1998) [Pubmed]
  9. Brain arachidonic acid incorporation is decreased in heart fatty acid binding protein gene-ablated mice. Murphy, E.J., Owada, Y., Kitanaka, N., Kondo, H., Glatz, J.F. Biochemistry. (2005) [Pubmed]
  10. Cloning and characterization of the mouse gene encoding mammary-derived growth inhibitor/heart-fatty acid-binding protein. Treuner, M., Kozak, C.A., Gallahan, D., Grosse, R., Müller, T. Gene (1994) [Pubmed]
  11. Peroxisome proliferator-activated receptor alpha and its response element are required but not sufficient for transcriptional activation of the mouse heart-type fatty acid binding protein gene. Kawabe, K., Saegusa, H., Seto, K., Urabe, H., Motojima, K. Int. J. Biochem. Cell Biol. (2005) [Pubmed]
  12. Heart fatty acid uptake is decreased in heart fatty acid-binding protein gene-ablated mice. Murphy, E.J., Barcelo-Coblijn, G., Binas, B., Glatz, J.F. J. Biol. Chem. (2004) [Pubmed]
  13. Mammary derived growth inhibitor is not a distinct protein but a mix of heart-type and adipocyte-type fatty acid-binding protein. Specht, B., Bartetzko, N., Hohoff, C., Kuhl, H., Franke, R., Börchers, T., Spener, F. J. Biol. Chem. (1996) [Pubmed]
  14. Functional analysis of peroxisome-proliferator-responsive element motifs in genes of fatty acid-binding proteins. Schachtrup, C., Emmler, T., Bleck, B., Sandqvist, A., Spener, F. Biochem. J. (2004) [Pubmed]
  15. Regulation of fluorescent fatty acid transfer from adipocyte and heart fatty acid binding proteins by acceptor membrane lipid composition and structure. Wootan, M.G., Storch, J. J. Biol. Chem. (1994) [Pubmed]
  16. Phenotype of palmitic acid transport and of signalling in alveolar type II cells from E/H-FABP double-knockout mice: contribution of caveolin-1 and PPARgamma. Guthmann, F., Schachtrup, C., Tölle, A., Wissel, H., Binas, B., Kondo, H., Owada, Y., Spener, F., Rüstow, B. Biochim. Biophys. Acta (2004) [Pubmed]
  17. Fatty acid binding sites of rodent adipocyte and heart fatty acid binding proteins: characterization using fluorescent fatty acids. Wootan, M.G., Bass, N.M., Bernlohr, D.A., Storch, J. Biochemistry (1990) [Pubmed]
  18. A null mutation in H-FABP only partially inhibits skeletal muscle fatty acid metabolism. Binas, B., Han, X.X., Erol, E., Luiken, J.J., Glatz, J.F., Dyck, D.J., Motazavi, R., Adihetty, P.J., Hood, D.A., Bonen, A. Am. J. Physiol. Endocrinol. Metab. (2003) [Pubmed]
  19. Isolation and identification of a mouse brain protein recognized by antisera to heart fatty acid-binding protein. Pu, L., Annan, R.S., Carr, S.A., Frolov, A., Wood, W.G., Spener, F., Schroeder, F. Lipids (1999) [Pubmed]
  20. Histochemical localization of heart-type fatty-acid binding protein in human and murine tissues. Zschiesche, W., Kleine, A.H., Spitzer, E., Veerkamp, J.H., Glatz, J.F. Histochem. Cell Biol. (1995) [Pubmed]
  21. Analysis on the phenotype of E-FABP-gene knockout mice. Owada, Y., Suzuki, I., Noda, T., Kondo, H. Mol. Cell. Biochem. (2002) [Pubmed]
  22. Breast cancer growth inhibition by delivery of the MDGI-derived peptide P108. Wang, H.L., Kurtz, A. Oncogene (2000) [Pubmed]
 
WikiGenes - Universities