The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Mia  -  melanoma inhibitory activity

Mus musculus

Synonyms: CD-RAP, Cartilage-derived retinoic acid-sensitive protein, Cdrap, Melanoma inhibitory activity protein, Melanoma-derived growth regulatory protein, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Mia1

 

High impact information on Mia1

  • It is thought that interaction between MIA/CD-RAP and specific epitopes in extracellular matrix proteins regulates the attachment of tumor cells and chondrocytes [2].
  • The full-length FGFR1-IIIb cDNA was generated and stably expressed in PANC-1 and MIA PaCa-2 pancreatic cancer and TAKA-1 pancreatic ductal cells [7].
  • Data from incubations with synthetic lipoxygenase products revealed that (a) the culture of mouse marrow cells in the presence of varying amounts of purified CSF-I (Mia PaCa 2) with a low concentration (5 micrograms/ml) of nordihydroguaretic acid consistently suppressed CSF-induced colony formation by approximately 40-50% [8].
  • CCAAT/enhancer-binding proteins beta and delta mediate the repression of gene transcription of cartilage-derived retinoic acid-sensitive protein induced by interleukin-1 beta [9].
  • Compared with MIA PaCa-2/vector cells, MIA PaCa-2/RII cells showed a greater than 3-fold increase in apoptosis after radiation [10].
 

Chemical compound and disease context of Mia1

 

Biological context of Mia1

 

Anatomical context of Mia1

  • To determine whether CD-RAP/MIA is associated with tumors of cartilage, mRNAs from a variety of rodent tissues and cell lines were screened [16].
  • Taken together, our data indicate that MIA/CD-RAP is essentially required for formation of the highly ordered ultrastructural fiber architecture in cartilage and may have a role in regulating chondrocyte matrix interactions [2].
  • Preliminary studies of the human MIA gene provided evidence that the promoter is specifically activated in melanoma cells but is silent in nonmelanocytic cells and benign melanocytes [14].
  • The finding of transient CD-RAP expression in mammary buds suggests that it may play a role in the organogenesis of mammary glands [3].
  • The intracellular mechanism of insulin resistance was investigated in isolated and perfused rat hepatocytes incubated with MIA PaCa2 conditioned medium [4].
 

Associations of Mia1 with chemical compounds

 

Physical interactions of Mia1

 

Other interactions of Mia1

  • Immunoreactivities of type II collagen and CD-RAP were higher in growth plate than in either the articular or meniscal cartilages and correlated positively with Sox9 protein [21].
  • In cartilage, a number of studies indicate that Sox transcription factors are critical positive regulators in genes such as COL2A1, COL9A2, COL11A2, aggrecan, and CD-RAP [22].
 

Analytical, diagnostic and therapeutic context of Mia1

References

  1. Tissue-restricted expression of the Cdrap/Mia gene within a conserved multigenic housekeeping locus. Davies, S.R., Li, J., Okazaki, K., Sandell, L.J. Genomics (2004) [Pubmed]
  2. Ultrastructural cartilage abnormalities in MIA/CD-RAP-deficient mice. Moser, M., Bosserhoff, A.K., Hunziker, E.B., Sandell, L., Fässler, R., Buettner, R. Mol. Cell. Biol. (2002) [Pubmed]
  3. The 2.2-kb promoter of cartilage-derived retinoic acid-sensitive protein controls gene expression in cartilage and embryonic mammary buds of transgenic mice. Xie, W.F., Zhang, X., Sandell, L.J. Matrix Biol. (2000) [Pubmed]
  4. Glucose metabolic alterations in isolated and perfused rat hepatocytes induced by pancreatic cancer conditioned medium: a low molecular weight factor possibly involved. Valerio, A., Basso, D., Brigato, L., Ceolotto, G., Baldo, G., Tiengo, A., Plebani, M. Biochem. Biophys. Res. Commun. (1999) [Pubmed]
  5. Functional role of melanoma inhibitory activity in regulating invasion and metastasis of malignant melanoma cells in vivo. Bosserhoff, A.K., Echtenacher, B., Hein, R., Buettner, R. Melanoma Res. (2001) [Pubmed]
  6. The Mia/Cd-rap gene expression is downregulated by the high-mobility group A proteins in mouse pituitary adenomas. De Martino, I., Visone, R., Palmieri, D., Cappabianca, P., Chieffi, P., Forzati, F., Barbieri, A., Kruhoffer, M., Lombardi, G., Fusco, A., Fedele, M. Endocr. Relat. Cancer (2007) [Pubmed]
  7. Identification of a fibroblast growth factor receptor 1 splice variant that inhibits pancreatic cancer cell growth. Liu, Z., Neiss, N., Zhou, S., Henne-Bruns, D., Korc, M., Bachem, M., Kornmann, M. Cancer Res. (2007) [Pubmed]
  8. Modulation of colony stimulating factor-induced murine myeloid colony formation by S-peptido-lipoxygenase products. Ziboh, V.A., Wong, T., Wu, M.C., Yunis, A.A. Cancer Res. (1986) [Pubmed]
  9. CCAAT/enhancer-binding proteins beta and delta mediate the repression of gene transcription of cartilage-derived retinoic acid-sensitive protein induced by interleukin-1 beta. Okazaki, K., Li, J., Yu, H., Fukui, N., Sandell, L.J. J. Biol. Chem. (2002) [Pubmed]
  10. Restoration of transforming growth factor-beta signaling enhances radiosensitivity by altering the Bcl-2/Bax ratio in the p53 mutant pancreatic cancer cell line MIA PaCa-2. Ahmed, M.M., Alcock, R.A., Chendil, D., Dey, S., Das, A., Venkatasubbarao, K., Mohiuddin, M., Sun, L., Strodel, W.E., Freeman, J.W. J. Biol. Chem. (2002) [Pubmed]
  11. Treatment With Gemcitabine and TRA-8 Anti-Death Receptor-5 mAb Reduces Pancreatic Adenocarcinoma Cell Viability In Vitro and Growth In Vivo. Derosier, L.C., Huang, Z.Q., Sellers, J.C., Buchsbaum, D.J., Vickers, S.M. J. Gastrointest. Surg. (2006) [Pubmed]
  12. Selective cyclooxygenase-2 inhibitor rofecoxib (Vioxx) induces expression of cell cycle arrest genes and slows tumor growth in human pancreatic cancer. Tseng, W.W., Deganutti, A., Chen, M.N., Saxton, R.E., Liu, C.D. J. Gastrointest. Surg. (2002) [Pubmed]
  13. Androgen receptor in human normal and malignant pancreatic tissue and cell lines. Corbishley, T.P., Iqbal, M.J., Wilkinson, M.L., Williams, R. Cancer (1986) [Pubmed]
  14. Characterization of a transcription factor binding site, specifically activating MIA transcription in melanoma. Golob, M., Buettner, R., Bosserhoff, A.K. J. Invest. Dermatol. (2000) [Pubmed]
  15. A catalogue of gene expression in the developing kidney. Schwab, K., Patterson, L.T., Aronow, B.J., Luckas, R., Liang, H.C., Potter, S.S. Kidney Int. (2003) [Pubmed]
  16. Mouse CD-RAP/MIA gene: structure, chromosomal localization, and expression in cartilage and chondrosarcoma. Bosserhoff, A.K., Kondo, S., Moser, M., Dietz, U.H., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Buettner, R., Sandell, L.J. Dev. Dyn. (1997) [Pubmed]
  17. Regulation of the mouse cartilage-derived retinoic acid-sensitive protein gene by the transcription factor AP-2. Xie, W.F., Kondo, S., Sandell, L.J. J. Biol. Chem. (1998) [Pubmed]
  18. Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor). Nishida, T., Kubota, S., Kojima, S., Kuboki, T., Nakao, K., Kushibiki, T., Tabata, Y., Takigawa, M. J. Bone Miner. Res. (2004) [Pubmed]
  19. Multiphasic modulation of signal transduction into T lymphocytes by monoiodoacetic acid as a sulfhydryl reagent. Ma, L., Pu, M.Y., Yi, H., Akhand, A.A., Ohata, N., Ohkusu, K., Kato, M., Iwamoto, T., Isobe, K., Hamaguchi, M. J. Cell. Biochem. (1995) [Pubmed]
  20. Trans-activation of the mouse cartilage-derived retinoic acid-sensitive protein gene by Sox9. Xie, W.F., Zhang, X., Sakano, S., Lefebvre, V., Sandell, L.J. J. Bone Miner. Res. (1999) [Pubmed]
  21. Distribution of the transcription factors Sox9, AP-2, and [delta]EF1 in adult murine articular and meniscal cartilage and growth plate. Davies, S.R., Sakano, S., Zhu, Y., Sandell, L.J. J. Histochem. Cytochem. (2002) [Pubmed]
  22. Extracellular matrix gene regulation. Okazaki, K., Sandell, L.J. Clin. Orthop. Relat. Res. (2004) [Pubmed]
  23. MIA (melanoma inhibitory activity) promoter mediated tissue-specific suicide gene therapy of malignant melanoma. Schoensiegel, F., Paschen, A., Sieger, S., Eskerski, H., Mier, W., Rothfels, H., Kleinschmidt, J., Schadendorf, D., Haberkorn, U. Cancer Gene Ther. (2004) [Pubmed]
  24. Cartilage-derived retinoic acid-sensitive protein and type II collagen expression during fracture healing are potential targets for Sox9 regulation. Sakano, S., Zhu, Y., Sandell, L.J. J. Bone Miner. Res. (1999) [Pubmed]
 
WikiGenes - Universities