The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Soat1  -  sterol O-acyltransferase 1

Mus musculus

Synonyms: 8430426K15Rik, ACAT-1, AW550831, Acact, Acyl-coenzyme A:cholesterol acyltransferase 1, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Soat1


Psychiatry related information on Soat1

  • Our results indicate that dietary modification of the microsomal fatty acid composition is associated with alterations in the activity of ACAT, an enzyme that is tightly bound to the microsomes [6].

High impact information on Soat1


Chemical compound and disease context of Soat1


Biological context of Soat1


Anatomical context of Soat1

  • However, the lesions in ACAT1-deficient mice were atypical in composition, with reduced amounts of neutral lipids and a paucity of macrophages in advanced lesions [1].
  • One of these enzymes, ACAT1, is highly expressed in macrophages in atherosclerotic lesions, where it contributes to foam-cell formation [1].
  • ACAT activity in the membrane fractions prepared from mouse liver and Caco-2 cells was also inhibited, indicating that the beauveriolides block both ACAT-1 and -2 [16].
  • ACAT activities were present in the liver and intestine but were completely absent in adrenal, testes, ovaries, and peritoneal macrophages in our ACAT-1-/- mice [12].
  • The ACAT-1-/- mice had decreased openings of the eyes because of atrophy of the meibomian glands, a modified form of sebaceous glands normally expressing high ACAT activities [12].

Associations of Soat1 with chemical compounds


Regulatory relationships of Soat1


Other interactions of Soat1


Analytical, diagnostic and therapeutic context of Soat1


  1. Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase 1. Accad, M., Smith, S.J., Newland, D.L., Sanan, D.A., King, L.E., Linton, M.F., Fazio, S., Farese, R.V. J. Clin. Invest. (2000) [Pubmed]
  2. Probucol prevents early coronary heart disease and death in the high-density lipoprotein receptor SR-BI/apolipoprotein E double knockout mouse. Braun, A., Zhang, S., Miettinen, H.E., Ebrahim, S., Holm, T.M., Vasile, E., Post, M.J., Yoerger, D.M., Picard, M.H., Krieger, J.L., Andrews, N.C., Simons, M., Krieger, M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  3. Tissue-specific expression and cholesterol regulation of acylcoenzyme A:cholesterol acyltransferase (ACAT) in mice. Molecular cloning of mouse ACAT cDNA, chromosomal localization, and regulation of ACAT in vivo and in vitro. Uelmen, P.J., Oka, K., Sullivan, M., Chang, C.C., Chang, T.Y., Chan, L. J. Biol. Chem. (1995) [Pubmed]
  4. ApoA-II expression in CETP transgenic mice increases VLDL production and impairs VLDL clearance. Escolà-Gil, J.C., Julve, J., Marzal-Casacuberta , A., Ordóñez-Llanos, J., González-Sastre, F., Blanco-Vaca, F. J. Lipid Res. (2001) [Pubmed]
  5. Reduced ABCA1-mediated cholesterol efflux and accelerated atherosclerosis in apolipoprotein E-deficient mice lacking macrophage-derived ACAT1. Su, Y.R., Dove, D.E., Major, A.S., Hasty, A.H., Boone, B., Linton, M.F., Fazio, S. Circulation (2005) [Pubmed]
  6. Effect of dietary fat saturation on acylcoenzyme A:-cholesterol acyltransferase activity of Ehrlich cell microsomes. Brenneman, D.E., Kaduce, T., Spector, A.A. J. Lipid Res. (1977) [Pubmed]
  7. Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Buhman, K.K., Accad, M., Novak, S., Choi, R.S., Wong, J.S., Hamilton, R.L., Turley, S., Farese, R.V. Nat. Med. (2000) [Pubmed]
  8. Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. Fazio, S., Major, A.S., Swift, L.L., Gleaves, L.A., Accad, M., Linton, M.F., Farese, R.V. J. Clin. Invest. (2001) [Pubmed]
  9. Foam cell-forming J774 macrophages have markedly elevated acyl coenzyme A:cholesterol acyl transferase activity compared with mouse peritoneal macrophages in the presence of low density lipoprotein (LDL) despite similar LDL receptor activity. Tabas, I., Boykow, G.C., Tall, A.R. J. Clin. Invest. (1987) [Pubmed]
  10. Crystallization of free cholesterol in model macrophage foam cells. Kellner-Weibel, G., Yancey, P.G., Jerome, W.G., Walser, T., Mason, R.P., Phillips, M.C., Rothblat, G.H. Arterioscler. Thromb. Vasc. Biol. (1999) [Pubmed]
  11. Cytotoxic cholesterol is generated by the hydrolysis of cytoplasmic cholesteryl ester and transported to the plasma membrane. Kellner-Weibel, G., Geng, Y.J., Rothblat, G.H. Atherosclerosis (1999) [Pubmed]
  12. Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia. Yagyu, H., Kitamine, T., Osuga, J., Tozawa, R., Chen, Z., Kaji, Y., Oka, T., Perrey, S., Tamura, Y., Ohashi, K., Okazaki, H., Yahagi, N., Shionoiri, F., Iizuka, Y., Harada, K., Shimano, H., Yamashita, H., Gotoda, T., Yamada, N., Ishibashi, S. J. Biol. Chem. (2000) [Pubmed]
  13. Genetic regulation of cholesterol homeostasis: chromosomal organization of candidate genes. Welch, C.L., Xia, Y.R., Shechter, I., Farese, R., Mehrabian, M., Mehdizadeh, S., Warden, C.H., Lusis, A.J. J. Lipid Res. (1996) [Pubmed]
  14. Regulation of high density lipoprotein receptors in cultured macrophages: role of acyl-CoA:cholesterol acyltransferase. Schmitz, G., Niemann, R., Brennhausen, B., Krause, R., Assmann, G. EMBO J. (1985) [Pubmed]
  15. Adrenocortical lipid depletion gene (ald) in AKR mice is associated with an acyl-CoA:cholesterol acyltransferase (ACAT) mutation. Meiner, V.L., Welch, C.L., Cases, S., Myers, H.M., Sande, E., Lusis, A.J., Farese, R.V. J. Biol. Chem. (1998) [Pubmed]
  16. Antiatherogenic activity of fungal beauveriolides, inhibitors of lipid droplet accumulation in macrophages. Namatame, I., Tomoda, H., Ishibashi, S., Omura, S. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  17. ACAT inhibitor pactimibe sulfate (CS-505) reduces and stabilizes atherosclerotic lesions by cholesterol-lowering and direct effects in apolipoprotein E-deficient mice. Terasaka, N., Miyazaki, A., Kasanuki, N., Ito, K., Ubukata, N., Koieyama, T., Kitayama, K., Tanimoto, T., Maeda, N., Inaba, T. Atherosclerosis (2007) [Pubmed]
  18. Acute P-407 administration to mice causes hypercholesterolemia by inducing cholesterolgenesis and down-regulating low-density lipoprotein receptor expression. Leon, C., Wasan, K.M., Sachs-Barrable, K., Johnston, T.P. Pharm. Res. (2006) [Pubmed]
  19. Modification of type III VLDL, their remnants, and VLDL from ApoE-knockout mice by p-hydroxyphenylacetaldehyde, a product of myeloperoxidase activity, causes marked cholesteryl ester accumulation in macrophages. Whitman, S.C., Hazen, S.L., Miller, D.B., Hegele, R.A., Heinecke, J.W., Huff, M.W. Arterioscler. Thromb. Vasc. Biol. (1999) [Pubmed]
  20. Role of acyl-coenzyme A:cholesterol acyltransferase-1 in the control of hepatic very low density lipoprotein secretion and low density lipoprotein receptor expression in the mouse and hamster. Spady, D.K., Willard, M.N., Meidell, R.S. J. Biol. Chem. (2000) [Pubmed]
  21. Compared with Acyl-CoA:cholesterol O-acyltransferase (ACAT) 1 and lecithin:cholesterol acyltransferase, ACAT2 displays the greatest capacity to differentiate cholesterol from sitosterol. Temel, R.E., Gebre, A.K., Parks, J.S., Rudel, L.L. J. Biol. Chem. (2003) [Pubmed]
  22. Cholesterol-mediated changes of neutral cholesterol esterase activity in macrophages. Mechanism for mobilization of cholesteryl esters in lipid droplets by HDL. Miura, S., Chiba, T., Mochizuki, N., Nagura, H., Nemoto, K., Tomita, I., Ikeda, M., Tomita, T. Arterioscler. Thromb. Vasc. Biol. (1997) [Pubmed]
  23. Free cholesterol deposition in the cornea of human apolipoprotein A-II transgenic mice with functional lecithin: cholesterol acyltransferase deficiency. Julve-Gil, J., Ruiz-Pérez, E., Casaroli-Marano, R.P., Marzal-Casacuberta, A., Escolà-Gil, J.C., González-Sastre, F., Blanco-Vaca, F. Metab. Clin. Exp. (1999) [Pubmed]
  24. Acyl-CoA:cholesterol acyltransferase inhibition reduces atherosclerosis in apolipoprotein E-deficient mice. Kusunoki, J., Hansoty, D.K., Aragane, K., Fallon, J.T., Badimon, J.J., Fisher, E.A. Circulation (2001) [Pubmed]
  25. Effect of trimethylamine-carbomethoxyborane on growth traits and lipid metabolism in lines of mice selected for high and low fat content. Eisen, E.J., Jones, E.E., Rajendran, K.G., Hall, I.H. Growth, development, and aging : GDA. (1996) [Pubmed]
  26. Direct effect of an acyl-CoA:cholesterol acyltransferase inhibitor, F-1394, on atherosclerosis in apolipoprotein E and low density lipoprotein receptor double knockout mice. Chiwata, T., Aragane, K., Fujinami, K., Kojima, K., Ishibashi, S., Yamada, N., Kusunoki, J. Br. J. Pharmacol. (2001) [Pubmed]
  27. Naringin alters the cholesterol biosynthesis and antioxidant enzyme activities in LDL receptor-knockout mice under cholesterol fed condition. Kim, H.J., Oh, G.T., Park, Y.B., Lee, M.K., Seo, H.J., Choi, M.S. Life Sci. (2004) [Pubmed]
WikiGenes - Universities