The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Mice, Inbred AKR

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Mice, Inbred AKR

  • These results indicate that the particular Fv-1 allele of AKR mice provides a permissive genetic background for endogenous ecotropic and xenotropic MuLV expression and that these viral activities may be etiologically involved in the development of spontaneous thymic lymphoma in the mouse [1].
  • The spleen colony assay was used to examine the effect of thymidine (dThd) on 5-fluorouracil (FUra) cytotoxicity in two transplantable leukemias, AKR (in AKR mice) and L1210 [in (BALB/c x DBA/2)F1 mice], in vivo [2].
  • Of 3 thymomas in 6-month-old 3-methylcholanthrene-treated AKR mice, all expressed c-myb and 2 expressed c-myc [3].
  • A previous report described the isolation of a directly transforming retrovirus, AKT8, from a spontaneous thymoma of an AKR mouse [4].
  • Adriamycin inhibited the endogenous RNA-, poly (A)-d(T)12-, and calf thymus DNA-catalyzed reaction of reverse transcriptase from AKR mouse murine leukemia virus (AKR-MLV) [5].

High impact information on Mice, Inbred AKR

  • The c-myc gene was strongly implicated in T-cell neoplasia when 15-25% of T lymphomas arising in AKR mice, a strain prone to leukaemia, were found to have retroviral inserts near c-myc [6].
  • Moreover, it was shown that IgM can potentiate the response in C5-deficient AKR mice, thus demonstrating that the complement factors acting before C5 are the crucial ones [7].
  • Genetic mapping of the ecotropic virus-inducing locus Akv-2 of the AKR mouse [8].
  • Thymocytes of AKR mice express two species of gp70, the envelope glycoprotein of murine leukemia virus (MuLV), encoded by the env gene [9].
  • Our conclusions are: (a) It is confirmed that the AKR mouse has two unlinked chromosomal genes, Akv-1 and Akv-2, each of which can independently give rise to the life-long high output of MuLV that is characteristic of AKR mice [10].

Chemical compound and disease context of Mice, Inbred AKR


Biological context of Mice, Inbred AKR


Anatomical context of Mice, Inbred AKR


Associations of Mice, Inbred AKR with chemical compounds


Gene context of Mice, Inbred AKR

  • Deletion of Gadd45a in leukemia/lymphoma-prone AKR mice decreased the latency for LBL [31].
  • In the present study, we have examined the effect of age, sex and gonadal steroids (estrogen and testosterone) on the level of ERalpha and ERbeta in the cerebral cortex of AKR mice [32].
  • MLNC from infected susceptible B10.BR and AKR mice produced large amounts of IFN-gamma in the relative absence of IL-4 and IL-9 [33].
  • AKR mice showed no decrease in IL-2 production even at 9 months of age, but there was an increase in IFN-gamma production showing levels lower than those in SAMP8 mice [34].
  • IL-5 levels failed to rise significantly above normal in B10.BR mice whilst in AKR mice high levels of IL-5 were detected early post-infection (p.i.) but levels decreased dramatically as the infection proceeded to reach normal levels by Day 34 [33].

Analytical, diagnostic and therapeutic context of Mice, Inbred AKR


  1. Fv-1 regulation of lymphoma development and of thymic ecotropic and xenotropic MuLV expression in mice of the AKR/J x RF/J cross. Mayer, A., Duran-Reynals, M.L., Lilly, F. Cell (1978) [Pubmed]
  2. In vivo enhancement of 5-fluorouracil cytotoxicity to AKR leukemia cells by thymidine in mice. Santelli, G., Valeriote, F. J. Natl. Cancer Inst. (1978) [Pubmed]
  3. Comparison of chemically induced and spontaneous murine thymic lymphomas in RF and AKR mice: differential expression of c-myc and c-myb. Chinsky, J., Lilly, F., Childs, G. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  4. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Staal, S.P. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  5. Effects of adriamycin on the reverse transcriptase and the production of murine leukemia virus. Tomita, Y., Kuwata, T. Cancer Res. (1976) [Pubmed]
  6. Murine T lymphomas with retroviral inserts in the chromosomal 15 locus for plasmacytoma variant translocations. Graham, M., Adams, J.M., Cory, S. Nature (1985) [Pubmed]
  7. Complement activation is required for IgM-mediated enhancement of the antibody response. Heyman, B., Pilström, L., Shulman, M.J. J. Exp. Med. (1988) [Pubmed]
  8. Genetic mapping of the ecotropic virus-inducing locus Akv-2 of the AKR mouse. Kozak, C.A., Rowe, W.P. J. Exp. Med. (1980) [Pubmed]
  9. Amplified env and gag products on AKR cells. Origin from different murine leukemia virus genomes. Tung, J.S., Fleissner, E. J. Exp. Med. (1980) [Pubmed]
  10. Relationship of infectious murine leukemia virus and virus-related antigens in genetic crosses between AKR and the Fv-1 compatible strain C57L. Ikeda, H., Rowe, W.P., Boyse, E.A., Stockert, E., Sato, H., Jacobs, S. J. Exp. Med. (1976) [Pubmed]
  11. Failure of amygdalin to arrest B16 melanoma and BW5147 AKR leukemia. Hill, G.J., Shine, T.E., Hill, H.Z., Miller, C. Cancer Res. (1976) [Pubmed]
  12. Serum pseudouridine as a biochemical marker in the development of AKR mouse lymphoma. Russo, T., Colonna, A., Salvatore, F., Cimino, F., Bridges, S., Gurgo, C. Cancer Res. (1984) [Pubmed]
  13. Reconstitution of a deficiency of AKR mouse macrophages for their response to lipid A activation for tumor cytotoxicity by complement subcomponent C1q: role of IFN-gamma. Leu, R.W., Zhou, A.Q., Rummage, J., Fast, D.J., Shannon, B.J. J. Immunol. (1991) [Pubmed]
  14. Variation in type 2 diabetes--related traits in mouse strains susceptible to diet-induced obesity. Rossmeisl, M., Rim, J.S., Koza, R.A., Kozak, L.P. Diabetes (2003) [Pubmed]
  15. Comparison of fluconazole and amphotericin B in treating histoplasmosis in immunosuppressed mice. Kobayashi, G.S., Travis, S.J., Medoff, G. Antimicrob. Agents Chemother. (1987) [Pubmed]
  16. Interaction of retinoic acid and 3-methylcholanthrene on the fine structure of mouse prostate epithelium in vitro. Müller-Salamin, L., Matter, A., Lasnitzki, I. J. Natl. Cancer Inst. (1979) [Pubmed]
  17. Correlation of the induction of transcription of the AKR mouse genome 5-lododeoxyuridine with the activation of an endogenous murine leukemia virus. Chattopadhyay, S.K., Jay, G., Lander, M.R., Levine, A.S. Cancer Res. (1979) [Pubmed]
  18. Incorporation of a potent antileukemic agent, 5-aza-2'-deoxycytidine, into DNA of cells from leukemic mice. Veselý, J., Cihák, A. Cancer Res. (1977) [Pubmed]
  19. Formation of 6-thioguanine and 6-mercaptopurine from their 9-alkyl derivatives in mice. Nelson, J.A., Vidale, E. Cancer Res. (1986) [Pubmed]
  20. Effect of iodoacetate on the bone marrow immunocompetence of AKR mice. Rheins, M.S., Filppi, J.A., Moore, V.S. Cancer Res. (1975) [Pubmed]
  21. Natural autoantibodies cytotoxic for thymus cells and for neuraminidase-treated leukemia cells in the sera of normal AKR mice. Schlesinger, M., Bekesi, J.G. J. Natl. Cancer Inst. (1977) [Pubmed]
  22. A new determinant of glucocorticoid sensitivity in lymphoid cell lines. Gasson, J.C., Bourgeois, S. J. Cell Biol. (1983) [Pubmed]
  23. Prevalence of non-T-cells in the replication of the N-tropic, type C virus of young AKR mice. Gisselbrecht, S., Blaineau, C., Hurot, M.A., Pozo, F., Levy, J.P. Cancer Res. (1978) [Pubmed]
  24. The matricellular protein SPARC/osteonectin as a newly identified factor up-regulated in obesity. Tartare-Deckert, S., Chavey, C., Monthouel, M.N., Gautier, N., Van Obberghen, E. J. Biol. Chem. (2001) [Pubmed]
  25. Modulation of fibronectin synthesis and fibronectin binding during transformation and differentiation of mouse AKR fibroblasts. Varani, J., Chakrabarty, S. J. Cell. Physiol. (1990) [Pubmed]
  26. Potentiation of anticancer agents by amphotericin B. Medoff, G., Valeriote, F., Dieckman, J. J. Natl. Cancer Inst. (1981) [Pubmed]
  27. Potentiation of cytotoxicity of anticancer agents by several different polyene antibiotics. Valeriote, F., Medoff, G., Dieckman, J. J. Natl. Cancer Inst. (1984) [Pubmed]
  28. Iodoacetate-induced inhibition and enhancement of spontaneous leukemia in AKR mice. Rheins, M.S., Filppi, J.A. J. Natl. Cancer Inst. (1977) [Pubmed]
  29. A murine model for central nervous system leukemia and its possible relevance to human leukemia. Lynch, R.G., Medoff, G., Valeriote, F. J. Natl. Cancer Inst. (1975) [Pubmed]
  30. In vivo potentiation of 5-fluorouracil cytotoxicity against AKR leukemia by purines, pyrimidines, and their nucleosides and deoxynucleosides. Santelli, G., Valeriote, F. J. Natl. Cancer Inst. (1980) [Pubmed]
  31. Gadd45a acts as a modifier locus for lymphoblastic lymphoma. Hollander, M.C., Patterson, A.D., Salvador, J.M., Anver, M.R., Hunger, S.P., Fornace, A.J. Leukemia (2005) [Pubmed]
  32. Expression of estrogen receptor (ER) alpha and beta in mouse cerebral cortex: Effect of age, sex and gonadal steroids. Sharma, P.K., Thakur, M.K. Neurobiol. Aging (2006) [Pubmed]
  33. Cellular immune responses to the murine nematode parasite Trichuris muris. II. Differential induction of TH-cell subsets in resistant versus susceptible mice. Else, K.J., Hültner, L., Grencis, R.K. Immunology (1992) [Pubmed]
  34. Age-related changes in ConA-induced cytokine production by splenocytes from senescence accelerated mice SAMP8. Aoki, K., Asano, K., Okamoto, K., Yoshida, T., Kuroiwa, Y. Immunol. Lett. (1995) [Pubmed]
  35. Growth and rejection of leukemia cells in individual mice after combined treatment with amphotericin B and 1,3-bis(2-chloroethyl)-1-nitrosourea. Valeriote, F., Lynch, R., Medoff, G., Tolen, S., Dieckman, J. J. Natl. Cancer Inst. (1978) [Pubmed]
  36. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. Chavey, C., Mari, B., Monthouel, M.N., Bonnafous, S., Anglard, P., Van Obberghen, E., Tartare-Deckert, S. J. Biol. Chem. (2003) [Pubmed]
  37. Exogenous C1q reconstitutes a secondary deficiency of C5-deficient AKR mouse macrophages for FcR-dependent cellular cytotoxicity and phagocytosis. Leu, R.W., Zhou, A.Q., Kennedy, M.J., Shannon, B.J. J. Immunol. (1991) [Pubmed]
  38. Changes in thymocyte proliferation at different stages of viral leukemogenesis in AKR mice. O'Donnell, P.V., Traganos, F. J. Immunol. (1986) [Pubmed]
  39. Adrenocortical lipid depletion gene (ald) in AKR mice is associated with an acyl-CoA:cholesterol acyltransferase (ACAT) mutation. Meiner, V.L., Welch, C.L., Cases, S., Myers, H.M., Sande, E., Lusis, A.J., Farese, R.V. J. Biol. Chem. (1998) [Pubmed]
WikiGenes - Universities