The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Gcgr  -  glucagon receptor

Rattus norvegicus

Synonyms: GL-R, Glucagon receptor
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Gcgr

 

High impact information on Gcgr

 

Chemical compound and disease context of Gcgr

 

Biological context of Gcgr

 

Anatomical context of Gcgr

 

Associations of Gcgr with chemical compounds

 

Physical interactions of Gcgr

  • Although the exact mechanism remains unknown, there is no doubt that the liver can adapt to physiological stress through modulation of GR binding characteristics to enhance the hepatic glucose production responsiveness to glucagon [17].
  • The glucagon receptor is a member of a distinct class of G protein-coupled receptors (GPCRs) sharing little amino acid sequence homology with the larger rhodopsin-like GPCR family [18].
 

Regulatory relationships of Gcgr

 

Other interactions of Gcgr

  • Amino acid residues 103-117 and 126-137 in the extracellular N-terminal tail and residues 206-219 and 220-231 in the first extracellular loop of the glucagon receptor were replaced with the corresponding segments of the glucagon-like peptide-1 receptor or the secretin receptor [22].
  • Our results suggest that although the Gln(3) residue of glucagon did not interact with the equivalent binding pocket as the Asp(3) residue of vasoactive intestinal peptide or secretin, the Asp(3)-glucagon analogue was able to interact with position 188 of the K188R/I195K glucagon receptor [23].
  • Insulin receptor degradation also was similar in the three groups, while glucagon receptor degradation was similar in the liver membranes of C and Pn rats but smaller in Pn + Mel animals [24].
  • Coupling of glucagon receptor to adenylyl cyclase. Requirement of a receptor-related guanyl nucleotide binding site for coupling of receptor to the enzyme [20].
  • These results show that the i2 and i3 loops play a role in glucagon receptor signaling, consistent with recent models for the mechanism of activation of G proteins by rhodopsin-like GPCRs [18].
 

Analytical, diagnostic and therapeutic context of Gcgr

References

  1. Localization of the rat genes encoding glucagon, glucagon receptor, and insulin receptor, candidates for diabetes mellitus susceptibility loci. Szpirer, C., Szpirer, J., Vanvooren, P., Rivière, M., Maget, B., Svoboda, M., Shiozawa, M., Simon, J.S., Jacob, H.J., Koike, G. Mamm. Genome (1997) [Pubmed]
  2. Hyperglycemia of diabetic rats decreased by a glucagon receptor antagonist. Johnson, D.G., Goebel, C.U., Hruby, V.J., Bregman, M.D., Trivedi, D. Science (1982) [Pubmed]
  3. Characteristics of the interaction of the glucagon receptor, cAMP, and insulin secretion in parent cells and clone 5F of a cultured rat insulinoma. Korman, L.Y., Bhathena, S.J., Voyles, N.R., Oie, H.K., Recant, L. Diabetes (1985) [Pubmed]
  4. Tissue-specific modulation of rat glucagon receptor mRNA by thyroid status. Morales, A., Lachuer, J., Duchamp, C., Vera, N., Georges, B., Cohen-Adad, F., Moulin, C., Barré, H. Mol. Cell. Endocrinol. (1998) [Pubmed]
  5. Expression cloning and signaling properties of the rat glucagon receptor. Jelinek, L.J., Lok, S., Rosenberg, G.B., Smith, R.A., Grant, F.J., Biggs, S., Bensch, P.A., Kuijper, J.L., Sheppard, P.O., Sprecher, C.A. Science (1993) [Pubmed]
  6. Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors. Sloop, K.W., Cao, J.X., Siesky, A.M., Zhang, H.Y., Bodenmiller, D.M., Cox, A.L., Jacobs, S.J., Moyers, J.S., Owens, R.A., Showalter, A.D., Brenner, M.B., Raap, A., Gromada, J., Berridge, B.R., Monteith, D.K., Porksen, N., McKay, R.A., Monia, B.P., Bhanot, S., Watts, L.M., Michael, M.D. J. Clin. Invest. (2004) [Pubmed]
  7. Glucagon-stimulable adenylyl cyclase in rat liver. The impact of streptozotocin-induced diabetes mellitus. Dighe, R.R., Rojas, F.J., Birnbaumer, L., Garber, A.J. J. Clin. Invest. (1984) [Pubmed]
  8. Identification of a glucose response element in the promoter of the rat glucagon receptor gene. Portois, L., Maget, B., Tastenoy, M., Perret, J., Svoboda, M. J. Biol. Chem. (1999) [Pubmed]
  9. Sequencing of eleven introns in genomic DNA encoding rat glucagon receptor and multiple alternative splicing of its mRNA. Maget, B., Tastenoy, M., Svoboda, M. FEBS Lett. (1994) [Pubmed]
  10. Alterations in hepatic glucagon receptor density and in Gsalpha and Gialpha2 protein content with diet-induced hepatic steatosis: effects of acute exercise. Charbonneau, A., Melancon, A., Lavoie, C., Lavoie, J.M. Am. J. Physiol. Endocrinol. Metab. (2005) [Pubmed]
  11. Glucagon receptor of human liver. Studies of its molecular weight and binding properties, and its ability to activate hepatic adenylyl cyclase of non-obese and obese subjects. Livingston, J.N., Einarsson, K., Backman, L., Ewerth, S., Arner, P. J. Clin. Invest. (1985) [Pubmed]
  12. Regulatory effect of glucagon on its own receptor concentrations and target-cell sensitivity in the rat. Santos, A., Blazquez, E. Diabetologia (1982) [Pubmed]
  13. Functional analysis of the glucose response element of the rat glucagon receptor gene in insulin-producing INS-1 cells. Portois, L., Tastenoy, M., Viollet, B., Svoboda, M. Biochim. Biophys. Acta (2002) [Pubmed]
  14. Glucagon receptor-mediated extracellular signal-regulated kinase 1/2 phosphorylation in rat mesangial cells: role of protein kinase A and phospholipase C. Li, X.C., Carretero, O.A., Shao, Y., Zhuo, J.L. Hypertension (2006) [Pubmed]
  15. Guanine nucleotide regulation of the interconversion of the two-state hepatic glucagon receptor system of rat. Wyborski, R.J., Horwitz, E.M., Jenkins, W.T., Mormol, J.S., Gurd, R.S. Arch. Biochem. Biophys. (1988) [Pubmed]
  16. Coupling of the glucagon receptor to adenylyl cyclase by GDP: evidence for two levels of regulation of adenylyl cyclase. Iyengar, R., Birnbaumer, L. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  17. Glucagon receptors: effect of exercise and fasting. Lavoie, C. Canadian journal of applied physiology = Revue canadienne de physiologie appliquée. (2005) [Pubmed]
  18. Two cytoplasmic loops of the glucagon receptor are required to elevate cAMP or intracellular calcium. Cypess, A.M., Unson, C.G., Wu, C.R., Sakmar, T.P. J. Biol. Chem. (1999) [Pubmed]
  19. Antibodies against specific extracellular epitopes of the glucagon receptor block glucagon binding. Unson, C.G., Cypess, A.M., Wu, C.R., Goldsmith, P.K., Merrifield, R.B., Sakmar, T.P. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  20. Coupling of glucagon receptor to adenylyl cyclase. Requirement of a receptor-related guanyl nucleotide binding site for coupling of receptor to the enzyme. Iyengar, R., Swartz, T.L., Birnbaumer, L. J. Biol. Chem. (1979) [Pubmed]
  21. Cross-talk between angiotensin II and glucagon receptor signaling mediates phosphorylation of mitogen-activated protein kinases ERK 1/2 in rat glomerular mesangial cells. Li, X.C., Carretero, O.A., Zhuo, J.L. Biochem. Pharmacol. (2006) [Pubmed]
  22. Roles of specific extracellular domains of the glucagon receptor in ligand binding and signaling. Unson, C.G., Wu, C.R., Jiang, Y., Yoo, B., Cheung, C., Sakmar, T.P., Merrifield, R.B. Biochemistry (2002) [Pubmed]
  23. Mutational analysis of the glucagon receptor: similarities with the vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide (PACAP)/secretin receptors for recognition of the ligand's third residue. Perret, J., Van Craenenbroeck, M., Langer, I., Vertongen, P., Gregoire, F., Robberecht, P., Waelbroeck, M. Biochem. J. (2002) [Pubmed]
  24. Effect of pinealectomy on liver insulin and glucagon receptor concentrations in the rat. Rodríguez, V., Mellado, C., Alvarez, E., De Diego, J.G., Blázquez, E. J. Pineal Res. (1989) [Pubmed]
  25. Ligand-mediated internalization of glucagon receptors in intact rat liver. Authier, F., Desbuquois, B., De Galle, B. Endocrinology (1992) [Pubmed]
  26. Chronic ethanol consumption disturbs G-protein expression and inhibits cyclic AMP-dependent signaling in regenerating rat liver. Diehl, A.M., Yang, S.Q., Cote, P., Wand, G.S. Hepatology (1992) [Pubmed]
  27. Characterization of the glucagon receptor and its functional domains using monoclonal antibodies. Iwanij, V., Vincent, A.C. J. Biol. Chem. (1990) [Pubmed]
 
WikiGenes - Universities