The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

FUS  -  FUS RNA binding protein

Homo sapiens

Synonyms: 75 kDa DNA-pairing protein, ALS6, ETM4, FUS1, HNRNPP2, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of FUS


Psychiatry related information on FUS


High impact information on FUS

  • FUS resembles a transcription factor in that it binds DNA, contributes a transcriptional activation domain to the FUS-ERG oncoprotein and interacts with several transcription factors in vitro [2] [8] [9].
  • Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma [10].
  • We show that the translocation t(12;16)(q13:p11) in malignant myxoid liposarcoma can be a fusion of the CHOP dominant negative transcription factor gene with a novel gene, FUS, which can result in fusion of the FUS glycine-rich protein with the whole CHOP coding region [10].
  • TLS is a novel nuclear RNA-binding protein with extensive sequence similarity to EWS, the product of a gene commonly translocated in Ewing's sarcoma [11] [2].
  • In TLS-CHOP the RNA-binding domain of TLS is replaced by the DNA-binding and leucine zipper dimerization domain of CHOP [11].

Chemical compound and disease context of FUS

  • One case of squamous cell carcinoma was called high grade squamous intraepithelial lesion (HGSIL) on TLS while the CS was unsatisfactory [12].
  • Eleven patients with hyperplasia of the lingual tonsil were treated with a Tungsram TLS 61 CO2 laser coupled to an operating microscope [13].
  • We reviewed the data of 26 children with malignancy at risk for TLS who received rasburicase for treatment or prophylaxis of acute hyperuricemia, producing a significant decrease in uric acid level in all the patients [14].

Biological context of FUS

  • The gene encoding the human TLS protein, also termed FUS, is located at the site of chromosomal translocations in human leukemias and sarcomas where it forms a chimeric fusion gene with one of several different genes [2] [15].
  • Exon 3 of FUS corresponds to exons 3 and 4 in EWS [16].
  • Oncoprotein TLS interacts with serine-arginine proteins involved in RNA splicing [15].
  • To identify interacting partners of TLS, we screened a yeast two-hybrid cDNA library constructed from mouse hematopoietic cells using the C-terminal region of TLS in the bait plasmid [15].
  • Encoding a protein with a putative coiled-coil structure, TFG previously was identified by a homology search in the Expressed Sequence Tag Database as having an SPYGQ-rich region similar to the N-terminal parts of EWS and TLS [17].

Anatomical context of FUS


Associations of FUS with chemical compounds


Physical interactions of FUS

  • The TLS-CHOP oncoprotein, found in the majority of human myxoid liposarcomas, consists of a fusion between the transcription factor CHOP/GADD153 and the N terminus of an RNA-binding protein TLS/FUS [24].
  • The liposarcoma fusion protein TLS/CHOP retains the ability to bind RNA Pol II but lacks the ability to recruit YB-1 due to replacement of the C-terminal domain of TLS by CHOP [25].
  • The TLS/FUS gene has been identified as a translocated gene in myxoid liposarcoma by the t(12;16)(q13;p11) translocation and encodes an RNA-binding protein that is highly homologous to the product of the EWS gene involved in Ewing's sarcoma [5].
  • beta-catenin interacts with the FUS proto-oncogene product and regulates pre-mRNA splicing [19].
  • The translocation results in rearrangements of the CHOP gene in 12q13 and the FUS gene in 16p11, creating a fusion gene where the RNA-binding domain of FUS is replaced by the DNA-binding and leucine zipper dimerization domain of CHOP [21].

Regulatory relationships of FUS


Other interactions of FUS


Analytical, diagnostic and therapeutic context of FUS



  1. Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Storlazzi, C.T., Mertens, F., Nascimento, A., Isaksson, M., Wejde, J., Brosjo, O., Mandahl, N., Panagopoulos, I. Hum. Mol. Genet. (2003) [Pubmed]
  2. TLS/FUS fusion domain of TLS/FUS-erg chimeric protein resulting from the t(16;21) chromosomal translocation in human myeloid leukemia functions as a transcriptional activation domain. Prasad, D.D., Ouchida, M., Lee, L., Rao, V.N., Reddy, E.S. Oncogene. (1994) [Pubmed]
  3. Proto-oncoprotein TLS/FUS is associated to the nuclear matrix and complexed with splicing factors PTB, SRm160, and SR proteins. Meissner, M., Lopato, S., Gotzmann, J., Sauermann, G., Barta, A. Exp. Cell Res. (2003) [Pubmed]
  4. Myxoid liposarcoma FUS-DDIT3 fusion oncogene induces C/EBP beta-mediated interleukin 6 expression. Göransson, M., Elias, E., Ståhlberg, A., Olofsson, A., Andersson, C., Aman, P. Int. J. Cancer (2005) [Pubmed]
  5. An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation. Ichikawa, H., Shimizu, K., Hayashi, Y., Ohki, M. Cancer Res. (1994) [Pubmed]
  6. A tactile display for international space station (ISS) extravehicular activity (EVA). Rochlis, J.L., Newman, D.J. Aviation, space, and environmental medicine. (2000) [Pubmed]
  7. RNA-binding protein TLS is a major nuclear aggregate-interacting protein in huntingtin exon 1 with expanded polyglutamine-expressing cells. Doi, H., Okamura, K., Bauer, P.O., Furukawa, Y., Shimizu, H., Kurosawa, M., Machida, Y., Miyazaki, H., Mitsui, K., Kuroiwa, Y., Nukina, N. J. Biol. Chem. (2008) [Pubmed]
  8. Retroviral transduction of TLS-ERG initiates a leukemogenic program in normal human hematopoietic cells. Pereira, D.S., Dorrell, C., Ito, C.Y., Gan, O.I., Murdoch, B., Rao, V.N., Zou, J.P., Reddy, E.S., Dick, J.E. Proc. Natl. Acad. Sci. U. S. A. (1998) [Pubmed]
  9. Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death. Hicks, G.G., Singh, N., Nashabi, A., Mai, S., Bozek, G., Klewes, L., Arapovic, D., White, E.K., Koury, M.J., Oltz, E.M., Van Kaer, L., Ruley, H.E. Nat. Genet. (2000) [Pubmed]
  10. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Rabbitts, T.H., Forster, A., Larson, R., Nathan, P. Nat. Genet. (1993) [Pubmed]
  11. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Crozat, A., Aman, P., Mandahl, N., Ron, D. Nature (1993) [Pubmed]
  12. Use of thin-layer preparations for gynecologic smears with emphasis on the cytomorphology of high-grade intraepithelial lesions and carcinomas. Wilbur, D.C., Dubeshter, B., Angel, C., Atkison, K.M. Diagn. Cytopathol. (1996) [Pubmed]
  13. Laser lingual tonsillotomy. Sávay, L., Jóri, J., Czigner, J. Acta chirurgica Hungarica. (1992) [Pubmed]
  14. Efficacy and safety of recombinant urate oxidase (rasburicase) for treatment and prophylaxis of hyperuricemia in children undergoing chemotherapy. Pession, A., Barbieri, E., Santoro, N., Paolucci, P., Porta, F., Locatelli, F. Haematologica (2005) [Pubmed]
  15. Oncoprotein TLS interacts with serine-arginine proteins involved in RNA splicing. Yang, L., Embree, L.J., Tsai, S., Hickstein, D.D. J. Biol. Chem. (1998) [Pubmed]
  16. Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Aman, P., Panagopoulos, I., Lassen, C., Fioretos, T., Mencinger, M., Toresson, H., Höglund, M., Forster, A., Rabbitts, T.H., Ron, D., Mandahl, N., Mitelman, F. Genomics (1996) [Pubmed]
  17. TFG is a novel fusion partner of NOR1 in extraskeletal myxoid chondrosarcoma. Hisaoka, M., Ishida, T., Imamura, T., Hashimoto, H. Genes Chromosomes Cancer (2004) [Pubmed]
  18. Expression of the FUS-CHOP fusion protein in primary mesenchymal progenitor cells gives rise to a model of myxoid liposarcoma. Riggi, N., Cironi, L., Provero, P., Suvà, M.L., Stehle, J.C., Baumer, K., Guillou, L., Stamenkovic, I. Cancer Res. (2006) [Pubmed]
  19. beta-catenin interacts with the FUS proto-oncogene product and regulates pre-mRNA splicing. Sato, S., Idogawa, M., Honda, K., Fujii, G., Kawashima, H., Takekuma, K., Hoshika, A., Hirohashi, S., Yamada, T. Gastroenterology (2005) [Pubmed]
  20. TLS (translocated-in-liposarcoma) is a high-affinity interactor for steroid, thyroid hormone, and retinoid receptors. Powers, C.A., Mathur, M., Raaka, B.M., Ron, D., Samuels, H.H. Mol. Endocrinol. (1998) [Pubmed]
  21. Characterization of the CHOP breakpoints and fusion transcripts in myxoid liposarcomas with the 12;16 translocation. Panagopoulos, I., Mandahl, N., Ron, D., Höglund, M., Nilbert, M., Mertens, F., Mitelman, F., Aman, P. Cancer Res. (1994) [Pubmed]
  22. Human 75-kDa DNA-pairing protein is identical to the pro-oncoprotein TLS/FUS and is able to promote D-loop formation. Baechtold, H., Kuroda, M., Sok, J., Ron, D., Lopez, B.S., Akhmedov, A.T. J. Biol. Chem. (1999) [Pubmed]
  23. Human POMp75 is identified as the pro-oncoprotein TLS/FUS: both POMp75 and POMp100 DNA homologous pairing activities are associated to cell proliferation. Bertrand, P., Akhmedov, A.T., Delacote, F., Durrbach, A., Lopez, B.S. Oncogene (1999) [Pubmed]
  24. Induction of a secreted protein by the myxoid liposarcoma oncogene. Kuroda, M., Wang, X., Sok, J., Yin, Y., Chung, P., Giannotti, J.W., Jacobs, K.A., Fitz, L.J., Murtha-Riel, P., Turner, K.J., Ron, D. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  25. RNA splicing mediated by YB-1 is inhibited by TLS/CHOP in human myxoid liposarcoma cells. Rapp, T.B., Yang, L., Conrad, E.U., Mandahl, N., Chansky, H.A. J. Orthop. Res. (2002) [Pubmed]
  26. The oncogenic fusion protein-tyrosine kinase ZNF198/fibroblast growth factor receptor-1 has signaling function comparable with interleukin-6 cytokine receptors. Baumann, H., Kunapuli, P., Tracy, E., Cowell, J.K. J. Biol. Chem. (2003) [Pubmed]
  27. TLS, EWS and TAF15: a model for transcriptional integration of gene expression. Law, W.J., Cann, K.L., Hicks, G.G. Briefings in functional genomics & proteomics. (2006) [Pubmed]
  28. The Myxoid/Round Cell Liposarcoma Fusion Oncogene FUS-DDIT3 and the Normal DDIT3 Induce a Liposarcoma Phenotype in Transfected Human Fibrosarcoma Cells. Engström, K., Willén, H., Kåbjörn-Gustafsson, C., Andersson, C., Olsson, M., Göransson, M., Järnum, S., Olofsson, A., Warnhammar, E., Aman, P. Am. J. Pathol. (2006) [Pubmed]
  29. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11. Waters, B.L., Panagopoulos, I., Allen, E.F. Cancer Genet. Cytogenet. (2000) [Pubmed]
  30. Mass spectroscopy identifies the splicing-associated proteins, PSF, hnRNP H3, hnRNP A2/B1, and TLS/FUS as interacting partners of the ZNF198 protein associated with rearrangement in myeloproliferative disease. Kasyapa, C.S., Kunapuli, P., Cowell, J.K. Exp. Cell Res. (2005) [Pubmed]
  31. Cabeza, a Drosophila gene encoding a novel RNA binding protein, shares homology with EWS and TLS, two genes involved in human sarcoma formation. Stolow, D.T., Haynes, S.R. Nucleic Acids Res. (1995) [Pubmed]
  32. FUS/ERG gene fusions in Ewing's tumors. Shing, D.C., McMullan, D.J., Roberts, P., Smith, K., Chin, S.F., Nicholson, J., Tillman, R.M., Ramani, P., Cullinane, C., Coleman, N. Cancer Res. (2003) [Pubmed]
WikiGenes - Universities