The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

IFNL1  -  interferon, lambda 1

Homo sapiens

Synonyms: Cytokine Zcyto21, IFN-lambda-1, IL-29, IL29, Interferon lambda-1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of IL29

 

High impact information on IL29

  • Three closely positioned genes on human chromosome 19 encode distinct but paralogous proteins, which we designate interferon-lambda1 (IFN-lambda1), IFN-lambda2 and IFN-lambda3 (tentatively designated as IL-29, IL-28A and IL-28B, respectively, by HUGO) [6].
  • Similar observation were obtained in human TLR8-expressing monocyte-derived DC (moDC) using neutralizing anti-IFNAR2 antibodies, although results also pointed to a possible involvement of IFN-lambda1 (also known as IL-29) [7].
  • Interferon-lambda-treated dendritic cells specifically induce proliferation of FOXP3-expressing suppressor T cells [8].
  • In this work, we show that DCs acquire IFN-lambda responsiveness through the expression of the specific IFN-lambda receptor chain during their differentiation from monocytes [8].
  • In conclusion, IL-29 and IFN-alpha stimulate identical antiviral responses despite their utilization of different receptors [2].
 

Biological context of IL29

 

Anatomical context of IL29

  • First, we show that hepatic cell lines express the IFN-lambda receptor complex consisting of IFN-lambdaR1 (IL-28R1) and IL-10R2 [12].
  • Here, we demonstrate that intestinal epithelial cell (IEC) lines as well as murine and human colonic tissue express the IFN-lambda receptor subunits IL-28R and IL-10R2 [9].
  • IFN-lambda expression in tumor cell lines markedly inhibited s.c. and metastatic tumor formation in vivo compared with mock transfections (p < 0.05) [5].
  • Moreover, IFN-lambda expression induced lymphocytic infiltrates, and an Ab-mediated immune cell depletion assay showed that NK cells were critical to IFN-lambda-mediated tumor growth inhibition [5].
  • The discrepancy between the observed antiviral activity in vitro and in vivo may suggest that IFN-lambda exerts a significant portion of its antiviral activity in vivo via stimulation of the immune system rather than through induction of the antiviral state [13].
 

Associations of IL29 with chemical compounds

  • Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-lambda 1: similarities with type I interferon signaling [10].
  • Liposome-mediated IL-28 and IL-29 expression in A549 cells and anti-viral effect of IL-28 and IL-29 on WISH cells [4].
  • It involved of cloning IL-29 gene into the pET-44 Ek/LIC vector, which allowed expression of IL-29 with a fusion tag consisting of the NusA protein, polyhistidine and S peptide (Nus-His-S-tag), and introducing a thrombin recognition site between the fusion tag and IL-29 [14].
 

Regulatory relationships of IL29

 

Other interactions of IL29

 

Analytical, diagnostic and therapeutic context of IL29

References

  1. Biological activity of interleukins-28 and -29: comparison with type I interferons. Meager, A., Visvalingam, K., Dilger, P., Bryan, D., Wadhwa, M. Cytokine (2005) [Pubmed]
  2. Interleukin-29 uses a type 1 interferon-like program to promote antiviral responses in human hepatocytes. Doyle, S.E., Schreckhise, H., Khuu-Duong, K., Henderson, K., Rosler, R., Storey, H., Yao, L., Liu, H., Barahmand-Pour, F., Sivakumar, P., Chan, C., Birks, C., Foster, D., Clegg, C.H., Wietzke-Braun, P., Mihm, S., Klucher, K.M. Hepatology (2006) [Pubmed]
  3. Gene expression and antiviral activity of alpha/beta interferons and interleukin-29 in virus-infected human myeloid dendritic cells. Osterlund, P., Veckman, V., Sirén, J., Klucher, K.M., Hiscott, J., Matikainen, S., Julkunen, I. J. Virol. (2005) [Pubmed]
  4. Liposome-mediated IL-28 and IL-29 expression in A549 cells and anti-viral effect of IL-28 and IL-29 on WISH cells. Li, M.C., Wang, H.Y., Wang, H.Y., Li, T., He, S.H. Acta Pharmacol. Sin. (2006) [Pubmed]
  5. Antitumor activity of IFN-lambda in murine tumor models. Sato, A., Ohtsuki, M., Hata, M., Kobayashi, E., Murakami, T. J. Immunol. (2006) [Pubmed]
  6. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Kotenko, S.V., Gallagher, G., Baurin, V.V., Lewis-Antes, A., Shen, M., Shah, N.K., Langer, J.A., Sheikh, F., Dickensheets, H., Donnelly, R.P. Nat. Immunol. (2003) [Pubmed]
  7. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. Gautier, G., Humbert, M., Deauvieau, F., Scuiller, M., Hiscott, J., Bates, E.E., Trinchieri, G., Caux, C., Garrone, P. J. Exp. Med. (2005) [Pubmed]
  8. Interferon-lambda-treated dendritic cells specifically induce proliferation of FOXP3-expressing suppressor T cells. Mennechet, F.J., Uzé, G. Blood (2006) [Pubmed]
  9. IL-28A and IL-29 mediate antiproliferative and antiviral signals in intestinal epithelial cells and murine CMV infection increases colonic IL-28A expression. Brand, S., Beigel, F., Olszak, T., Zitzmann, K., Eichhorst, S.T., Otte, J.M., Diebold, J., Diepolder, H., Adler, B., Auernhammer, C.J., Göke, B., Dambacher, J. Am. J. Physiol. Gastrointest. Liver Physiol. (2005) [Pubmed]
  10. Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-lambda 1: similarities with type I interferon signaling. Dumoutier, L., Tounsi, A., Michiels, T., Sommereyns, C., Kotenko, S.V., Renauld, J.C. J. Biol. Chem. (2004) [Pubmed]
  11. The newest interleukins: recent additions to the ever-growing cytokine family. Chen, Q., Carroll, H.P., Gadina, M. Vitam. Horm. (2006) [Pubmed]
  12. SOCS-1 inhibits expression of the antiviral proteins 2',5'-OAS and MxA induced by the novel interferon-lambdas IL-28A and IL-29. Brand, S., Zitzmann, K., Dambacher, J., Beigel, F., Olszak, T., Vlotides, G., Eichhorst, S.T., Göke, B., Diepolder, H., Auernhammer, C.J. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  13. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. Ank, N., West, H., Bartholdy, C., Eriksson, K., Thomsen, A.R., Paludan, S.R. J. Virol. (2006) [Pubmed]
  14. Purification and characterization of recombinant human interleukin-29 expressed in Escherichia coli. Li, M., He, S. J. Biotechnol. (2006) [Pubmed]
  15. Modulation of the human cytokine response by interferon lambda-1 (IFN-lambda1/IL-29). Jordan, W.J., Eskdale, J., Boniotto, M., Rodia, M., Kellner, D., Gallagher, G. Genes Immun. (2007) [Pubmed]
  16. Differential expression of the human thymosin-beta 4 gene in lymphocytes, macrophages, and granulocytes. Gondo, H., Kudo, J., White, J.W., Barr, C., Selvanayagam, P., Saunders, G.F. J. Immunol. (1987) [Pubmed]
 
WikiGenes - Universities