The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

West Nile Virus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of West Nile Virus


High impact information on West Nile Virus


Chemical compound and disease context of West Nile Virus


Biological context of West Nile Virus


Anatomical context of West Nile Virus


Gene context of West Nile Virus


Analytical, diagnostic and therapeutic context of West Nile Virus


  1. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Wang, T., Town, T., Alexopoulou, L., Anderson, J.F., Fikrig, E., Flavell, R.A. Nat. Med. (2004) [Pubmed]
  2. Genetic analysis of West Nile New York 1999 encephalitis virus. Jia, X.Y., Briese, T., Jordan, I., Rambaut, A., Chi, H.C., Mackenzie, J.S., Hall, R.A., Scherret, J., Lipkin, W.I. Lancet (1999) [Pubmed]
  3. Serpin mechanism of hepatitis C virus nonstructural 3 (NS3) protease inhibition: induced fit as a mechanism for narrow specificity. Richer, M.J., Juliano, L., Hashimoto, C., Jean, F. J. Biol. Chem. (2004) [Pubmed]
  4. Requirements for West Nile virus (-)- and (+)-strand subgenomic RNA synthesis in vitro by the viral RNA-dependent RNA polymerase expressed in Escherichia coli. Nomaguchi, M., Teramoto, T., Yu, L., Markoff, L., Padmanabhan, R. J. Biol. Chem. (2004) [Pubmed]
  5. Isolation of two strains of West Nile virus during an outbreak in southern Russia, 1999. Lvov, D.K., Butenko, A.M., Gromashevsky, V.L., Larichev, V.P., Gaidamovich, S.Y., Vyshemirsky, O.I., Zhukov, A.N., Lazorenko, V.V., Salko, V.N., Kovtunov, A.I., Galimzyanov, K.M., Platonov, A.E., Morozova, T.N., Khutoretskaya, N.V., Shishkina, E.O., Skvortsova, T.M. Emerging Infect. Dis. (2000) [Pubmed]
  6. CCR5 deficiency increases risk of symptomatic West Nile virus infection. Glass, W.G., McDermott, D.H., Lim, J.K., Lekhong, S., Yu, S.F., Frank, W.A., Pape, J., Cheshier, R.C., Murphy, P.M. J. Exp. Med. (2006) [Pubmed]
  7. The 2',5'-oligoadenylate synthetase 1b is a potent inhibitor of West Nile virus replication inside infected cells. Kajaste-Rudnitski, A., Mashimo, T., Frenkiel, M.P., Guénet, J.L., Lucas, M., Desprès, P. J. Biol. Chem. (2006) [Pubmed]
  8. Quantifying the specific binding between West Nile virus envelope domain III protein and the cellular receptor alphaVbeta3 integrin. Lee, J.W., Chu, J.J., Ng, M.L. J. Biol. Chem. (2006) [Pubmed]
  9. Interaction of West Nile virus with alpha v beta 3 integrin mediates virus entry into cells. Chu, J.J., Ng, M.L. J. Biol. Chem. (2004) [Pubmed]
  10. From the Centers for Disease Control and Prevention. West Nile Virus activity--United States, 2001. O'Leary, D.R., Nasci, R.S., Campbell, G.L., Marfin, A.A. JAMA (2002) [Pubmed]
  11. Antibodies against West Nile Virus nonstructural protein NS1 prevent lethal infection through Fc gamma receptor-dependent and -independent mechanisms. Chung, K.M., Nybakken, G.E., Thompson, B.S., Engle, M.J., Marri, A., Fremont, D.H., Diamond, M.S. J. Virol. (2006) [Pubmed]
  12. Outbreak of West Nile virus infection, Volgograd Region, Russia, 1999. Platonov, A.E., Shipulin, G.A., Shipulina, O.Y., Tyutyunnik, E.N., Frolochkina, T.I., Lanciotti, R.S., Yazyshina, S., Platonova, O.V., Obukhov, I.L., Zhukov, A.N., Vengerov, Y.Y., Pokrovskii, V.I. Emerging Infect. Dis. (2001) [Pubmed]
  13. Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo. Whitby, K., Pierson, T.C., Geiss, B., Lane, K., Engle, M., Zhou, Y., Doms, R.W., Diamond, M.S. J. Virol. (2005) [Pubmed]
  14. Analysis of extracellular West Nile virus particles produced by cell cultures from genetically resistant and susceptible mice indicates enhanced amplification of defective interfering particles by resistant cultures. Brinton, M.A. J. Virol. (1983) [Pubmed]
  15. Major histocompatibility complex class I (MHC-I) induction by West Nile virus: involvement of 2 signaling pathways in MHC-I up-regulation. Cheng, Y., King, N.J., Kesson, A.M. J. Infect. Dis. (2004) [Pubmed]
  16. Calgary experience with West Nile virus neurological syndrome during the late summer of 2003. Sayao, A.L., Suchowersky, O., Al-Khathaami, A., Klassen, B., Katz, N.R., Sevick, R., Tilley, P., Fox, J., Patry, D. The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques. (2004) [Pubmed]
  17. CD8+ T cells require perforin to clear West Nile virus from infected neurons. Shrestha, B., Samuel, M.A., Diamond, M.S. J. Virol. (2006) [Pubmed]
  18. Early E-selectin, VCAM-1, ICAM-1, and late major histocompatibility complex antigen induction on human endothelial cells by flavivirus and comodulation of adhesion molecule expression by immune cytokines. Shen, J., T-To, S.S., Schrieber, L., King, N.J. J. Virol. (1997) [Pubmed]
  19. Characterization of novel viral polyproteins detected in cells infected by the flavivirus Kunjin and radiolabelled in the presence of the leucine analogue hydroxyleucine. Crawford, G.R., Wright, P.J. J. Gen. Virol. (1987) [Pubmed]
  20. Characterization of a 105-kDa plasma membrane associated glycoprotein that is involved in West Nile virus binding and infection. Chu, J.J., Ng, M.L. Virology (2003) [Pubmed]
  21. Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins. Liu, W.J., Wang, X.J., Mokhonov, V.V., Shi, P.Y., Randall, R., Khromykh, A.A. J. Virol. (2005) [Pubmed]
  22. Different chemokine expression in lethal and non-lethal murine West Nile virus infection. Shirato, K., Kimura, T., Mizutani, T., Kariwa, H., Takashima, I. J. Med. Virol. (2004) [Pubmed]
  23. West Nile virus evades activation of interferon regulatory factor 3 through RIG-I-dependent and -independent pathways without antagonizing host defense signaling. Fredericksen, B.L., Gale, M. J. Virol. (2006) [Pubmed]
  24. West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. Davis, C.W., Nguyen, H.Y., Hanna, S.L., Sánchez, M.D., Doms, R.W., Pierson, T.C. J. Virol. (2006) [Pubmed]
  25. The Src family kinase c-Yes is required for maturation of West Nile virus particles. Hirsch, A.J., Medigeshi, G.R., Meyers, H.L., DeFilippis, V., Früh, K., Briese, T., Lipkin, W.I., Nelson, J.A. J. Virol. (2005) [Pubmed]
  26. Peptide mapping of envelope-related glycoproteins specified by the flaviviruses Kunjin and West Nile. Wright, P.J., Warr, H.M. J. Gen. Virol. (1985) [Pubmed]
  27. Detection of West Nile virus using formalin fixed paraffin embedded tissues in crows and horses: quantification of viral transcripts by real-time RT-PCR. Tewari, D., Kim, H., Feria, W., Russo, B., Acland, H. J. Clin. Virol. (2004) [Pubmed]
  28. Use of live and inactivated vaccines in the control of West Nile fever in domestic geese. Malkinson, M., Banet, C., Khinich, Y., Samina, I., Pokamunski, S., Weisman, Y. Ann. N. Y. Acad. Sci. (2001) [Pubmed]
  29. West Nile virus envelope protein: role in diagnosis and immunity. Wang, T., Anderson, J.F., Magnarelli, L.A., Bushmich, S., Wong, S., Koski, R.A., Fikrig, E. Ann. N. Y. Acad. Sci. (2001) [Pubmed]
  30. The prevalence of arboviral, rickettsial, and Hantaan-like viral antibody among schoolchildren in the Nile river delta of Egypt. Corwin, A., Habib, M., Olson, J., Scott, D., Ksiazek, T., Watts, D.M. Trans. R. Soc. Trop. Med. Hyg. (1992) [Pubmed]
WikiGenes - Universities