The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

FOXP3  -  forkhead box P3

Homo sapiens

Synonyms: AIID, DIETER, Forkhead box protein P3, IPEX, JM2, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of FOXP3


High impact information on FOXP3


Chemical compound and disease context of FOXP3

  • For testing the in vivo significance of this effect, CD4(+)CD25(+) T cells that expressed high levels of Foxp3 were reconstituted into SCID mice after induction of Adriamycin nephropathy, a noncognate model of chronic renal disease [11].

Biological context of FOXP3

  • Gene expression of Treg transcription factor FOXP3 was reduced in cGVHD patients compared with patients without cGVHD (P = .009) or healthy donors (P = .01) [1].
  • Mutations of the forkhead/winged helix transcription factor FOXP3 gene on chromosome Xp11.23 cause a rare recessive monogenic disorder called IPEX (immune dysregulation, polyendocrinopathy, including type 1 diabetes, enteropathy, and X-linked syndrome) [12].
  • FOXP3 is playing an essential role for T regulatory cells and is involved in the molecular mechanisms controlling immune tolerance [13].
  • The basal promoter contains six NF-AT and AP-1 binding sites, which are positively regulating the trans activation of the FOXP3 promoter after triggering of the TCR [13].
  • The FOXP3 promoter was defined by RACE, cloned, and functionally analyzed using reporter-gene constructs in primary human T cells [13].

Anatomical context of FOXP3


Associations of FOXP3 with chemical compounds

  • Furthermore, the study identifies essential, positive regulators of the FOXP3 gene and highlights cyclosporin A as an inhibitor of FOXP3 expression contrasting other immunosuppressants such as steroids or rapamycin [13].
  • Future studies will evaluate the effects of therapies known to influence Treg cell function and FOXP3 expression, including TCR peptide vaccination and supplemental estrogen [2].
  • FOXP3 mRNA levels were inversely correlated with serum creatinine levels measured at the time of biopsy in the acute-rejection group (Spearman's correlation coefficient = -0.38, P=0.02) but not in the group with chronic allograft nephropathy or the group with normal biopsy results [18].
  • FOXP3-positive T(R) represent a novel marker for identifying late-relapse patients who may benefit from aromatase therapy after standard tamoxifen treatment [19].
  • Proliferation in the presence or absence of oxidized LDL (oxLDL) was evaluated by thymidine incorporation. mRNA and protein content of foxp3, a master transcriptional regulator of Tregs, were determined for all subjects [20].

Physical interactions of FOXP3


Regulatory relationships of FOXP3

  • Human CD4+ T cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+CD25+ T regulatory cells [22].
  • Further, BV-LPS induced CD25 and Foxp3 expression in lymphocytes and CD4(+)CD25(+) cells expressed IL-10 mRNA [23].
  • In the present work, we demonstrate that Foxp3 can induce heme oxygenase-1 (HO-1) expression and subsequently such regulatory phenotypes as the suppression of nontransfected cells in a cell-cell contact-dependent manner as well as impaired proliferation and production of cytokines upon stimulation in Jurkat T cells [24].
  • The identification of transcription factors controlling Th1, Th2 and T-regulatory cell (T(Reg)) development further support the Th2 hypothesis since GATA3 is overexpressed and T-bet underexpressed in the asthmatic airway and Foxp3 is induced in asthma by corticosteroid treatment [25].
  • Blocking ILT-3 or IL-12 does not diminish the capacity of these DCs to induce regulation or Foxp3 expression on the regulatory T cells [26].
  • Ectopic expression of FOXP3 in mouse mammary cancer cells repressed SKP2 expression with a corresponding increase in p27 and polyploidy [27].
  • FOXP3 can be acetylated in primary human regulatory T cells, and TIP60 promotes FOXP3 acetylation in vivo [28].

Other interactions of FOXP3

  • We have also shown that binding of Foxp3 to the IL-2 and IFNgamma genes induces active deacetylation of histone H3, a process that inhibits chromatin remodeling and opposes gene transcription [21].
  • Disease-causing mutations in FOXP2 and FOXP3 map either to the DNA binding surface or the domain-swapping dimer interface, functionally corroborating the crystal structure [29].
  • BACKGROUND: The transcription factor FOXP3 has been identified as the molecule associated with the regulatory function of CD25+ T cells [30].
  • Our study is the first to establish that MS patients have abnormalities in FOXP3 message and protein expression levels in peripheral CD4+ CD25+ T cells (Tregs) that are quantitatively related to a reduction in functional suppression induced during suboptimal T-cell receptor (TCR) ligation [2].
  • The expression of Foxp3, CTLA-4, and ICOS mRNAs in PBMCs stimulated with bovine or human insulin was higher in patients on insulin treatment than in patients studied before starting insulin treatment [31].
  • The blockade of CD27-CD70 interaction by anti-CD70 Ab abrogated lymphoma B-cell-mediated induction of Foxp3 expression in intratumoral CD4(+)CD25(-) T cells [32].
  • Transfection of FOXP3-deficient CD4(+)CD25(+) T cells from patients with a plasmid encoding wild-type NFAT1 resulted in increased FOXP3 expression in these cells [33].

Analytical, diagnostic and therapeutic context of FOXP3


  1. Reduced frequency of FOXP3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Zorn, E., Kim, H.T., Lee, S.J., Floyd, B.H., Litsa, D., Arumugarajah, S., Bellucci, R., Alyea, E.P., Antin, J.H., Soiffer, R.J., Ritz, J. Blood (2005) [Pubmed]
  2. Decreased FOXP3 levels in multiple sclerosis patients. Huan, J., Culbertson, N., Spencer, L., Bartholomew, R., Burrows, G.G., Chou, Y.K., Bourdette, D., Ziegler, S.F., Offner, H., Vandenbark, A.A. J. Neurosci. Res. (2005) [Pubmed]
  3. Regulatory T-cells infiltrate periodontal disease tissues. Nakajima, T., Ueki-Maruyama, K., Oda, T., Ohsawa, Y., Ito, H., Seymour, G.J., Yamazaki, K. J. Dent. Res. (2005) [Pubmed]
  4. Structural analysis of disease-causing mutations in the P-subfamily of forkhead transcription factors. Banerjee-Basu, S., Baxevanis, A.D. Proteins (2004) [Pubmed]
  5. Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. Baratelli, F., Lin, Y., Zhu, L., Yang, S.C., Heuzé-Vourc'h, N., Zeng, G., Reckamp, K., Dohadwala, M., Sharma, S., Dubinett, S.M. J. Immunol. (2005) [Pubmed]
  6. FOXP3 controls regulatory T cell function through cooperation with NFAT. Wu, Y., Borde, M., Heissmeyer, V., Feuerer, M., Lapan, A.D., Stroud, J.C., Bates, D.L., Guo, L., Han, A., Ziegler, S.F., Mathis, D., Benoist, C., Chen, L., Rao, A. Cell (2006) [Pubmed]
  7. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Bennett, C.L., Christie, J., Ramsdell, F., Brunkow, M.E., Ferguson, P.J., Whitesell, L., Kelly, T.E., Saulsbury, F.T., Chance, P.F., Ochs, H.D. Nat. Genet. (2001) [Pubmed]
  8. Upregulation of TGF-beta, FOXP3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection. Walther, M., Tongren, J.E., Andrews, L., Korbel, D., King, E., Fletcher, H., Andersen, R.F., Bejon, P., Thompson, F., Dunachie, S.J., Edele, F., de Souza, J.B., Sinden, R.E., Gilbert, S.C., Riley, E.M., Hill, A.V. Immunity (2005) [Pubmed]
  9. Foxp3 and Aire in thymus-generated T(reg) cells: a link in self-tolerance. Nomura, T., Sakaguchi, S. Nat. Immunol. (2007) [Pubmed]
  10. Erratum: A function for interleukin 2 in Foxp3-expressing regulatory T cells. Fontenot, J.D., Rasmussen, J.P., Gavin, M.A., Rudensky, A.Y. Nat. Immunol. (2006) [Pubmed]
  11. CD4+CD25+ Regulatory T Cells Protect against Injury in an Innate Murine Model of Chronic Kidney Disease. Mahajan, D., Wang, Y., Qin, X., Wang, Y., Zheng, G., Wang, Y.M., Alexander, S.I., Harris, D.C. J. Am. Soc. Nephrol. (2006) [Pubmed]
  12. No association between variation of the FOXP3 gene and common type 1 diabetes in the Sardinian population. Zavattari, P., Deidda, E., Pitzalis, M., Zoa, B., Moi, L., Lampis, R., Contu, D., Motzo, C., Frongia, P., Angius, E., Maioli, M., Todd, J.A., Cucca, F. Diabetes (2004) [Pubmed]
  13. Molecular mechanisms underlying FOXP3 induction in human T cells. Mantel, P.Y., Ouaked, N., Rückert, B., Karagiannidis, C., Welz, R., Blaser, K., Schmidt-Weber, C.B. J. Immunol. (2006) [Pubmed]
  14. Mucosal FOXP3+ regulatory T cells are numerically deficient in acute and chronic GvHD. Rieger, K., Loddenkemper, C., Maul, J., Fietz, T., Wolff, D., Terpe, H., Steiner, B., Berg, E., Miehlke, S., Bornhäuser, M., Schneider, T., Zeitz, M., Stein, H., Thiel, E., Duchmann, R., Uharek, L. Blood (2006) [Pubmed]
  15. Mutational analysis of the FOXP3 gene and evidence for genetic heterogeneity in the immunodysregulation, polyendocrinopathy, enteropathy syndrome. Owen, C.J., Jennings, C.E., Imrie, H., Lachaux, A., Bridges, N.A., Cheetham, T.D., Pearce, S.H. J. Clin. Endocrinol. Metab. (2003) [Pubmed]
  16. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Allan, S.E., Crome, S.Q., Crellin, N.K., Passerini, L., Steiner, T.S., Bacchetta, R., Roncarolo, M.G., Levings, M.K. Int. Immunol. (2007) [Pubmed]
  17. Induction of FOXP3-expressing regulatory CD4pos T cells by human mature autologous dendritic cells. Verhasselt, V., Vosters, O., Beuneu, C., Nicaise, C., Stordeur, P., Goldman, M. Eur. J. Immunol. (2004) [Pubmed]
  18. Messenger RNA for FOXP3 in the urine of renal-allograft recipients. Muthukumar, T., Dadhania, D., Ding, R., Snopkowski, C., Naqvi, R., Lee, J.B., Hartono, C., Li, B., Sharma, V.K., Seshan, S.V., Kapur, S., Hancock, W.W., Schwartz, J.E., Suthanthiran, M. N. Engl. J. Med. (2005) [Pubmed]
  19. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. Bates, G.J., Fox, S.B., Han, C., Leek, R.D., Garcia, J.F., Harris, A.L., Banham, A.H. J. Clin. Oncol. (2006) [Pubmed]
  20. Altered status of CD4+CD25+ regulatory T cells in patients with acute coronary syndromes. Mor, A., Luboshits, G., Planer, D., Keren, G., George, J. Eur. Heart J. (2006) [Pubmed]
  21. Transcriptional regulation by foxp3 is associated with direct promoter occupancy and modulation of histone acetylation. Chen, C., Rowell, E.A., Thomas, R.M., Hancock, W.W., Wells, A.D. J. Biol. Chem. (2006) [Pubmed]
  22. Human CD4+ T cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+CD25+ T regulatory cells. Crellin, N.K., Garcia, R.V., Hadisfar, O., Allan, S.E., Steiner, T.S., Levings, M.K. J. Immunol. (2005) [Pubmed]
  23. Lipopolysaccharide induces CD25-positive, IL-10-producing lymphocytes without secretion of proinflammatory cytokines in the human colon: low MD-2 mRNA expression in colonic macrophages. Shirai, Y., Hashimoto, M., Kato, R., Kawamura, Y.I., Kirikae, T., Yano, H., Takashima, J., Kirihara, Y., Saito, Y., Fujino, M.A., Dohi, T. J. Clin. Immunol. (2004) [Pubmed]
  24. Critical role of heme oxygenase-1 in Foxp3-mediated immune suppression. Choi, B.M., Pae, H.O., Jeong, Y.R., Kim, Y.M., Chung, H.T. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  25. The role of T lymphocytes in asthma. Kay, A.B. Chemical immunology and allergy (2006) [Pubmed]
  26. Aspirin-treated human DCs up-regulate ILT-3 and induce hyporesponsiveness and regulatory activity in responder T cells. Buckland, M., Jago, C.B., Fazekasova, H., Scott, K., Tan, P.H., George, A.J., Lechler, R., Lombardi, G. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. (2006) [Pubmed]
  27. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. Zuo, T., Liu, R., Zhang, H., Chang, X., Liu, Y., Wang, L., Zheng, P., Liu, Y. J. Clin. Invest. (2007) [Pubmed]
  28. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Li, B., Samanta, A., Song, X., Iacono, K.T., Bembas, K., Tao, R., Basu, S., Riley, J.L., Hancock, W.W., Shen, Y., Saouaf, S.J., Greene, M.I. Proc. Natl. Acad. Sci. U.S.A. (2007) [Pubmed]
  29. Structure of the forkhead domain of FOXP2 bound to DNA. Stroud, J.C., Wu, Y., Bates, D.L., Han, A., Nowick, K., Paabo, S., Tong, H., Chen, L. Structure (2006) [Pubmed]
  30. Differential effect of calcineurin inhibitors, anti-CD25 antibodies and rapamycin on the induction of FOXP3 in human T cells. Baan, C.C., van der Mast, B.J., Klepper, M., Mol, W.M., Peeters, A.M., Korevaar, S.S., Balk, A.H., Weimar, W. Transplantation (2005) [Pubmed]
  31. Insulin treatment in patients with type 1 diabetes induces upregulation of regulatory T-cell markers in peripheral blood mononuclear cells stimulated with insulin in vitro. Tiittanen, M., Huupponen, J.T., Knip, M., Vaarala, O. Diabetes (2006) [Pubmed]
  32. CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+CD25 T cells. Yang, Z.Z., Novak, A.J., Ziesmer, S.C., Witzig, T.E., Ansell, S.M. Blood (2007) [Pubmed]
  33. Deficient CD4+ CD25+ FOXP3+ T regulatory cells in acquired aplastic anemia. Solomou, E.E., Rezvani, K., Mielke, S., Malide, D., Keyvanfar, K., Visconte, V., Kajigaya, S., Barrett, A.J., Young, N.S. Blood (2007) [Pubmed]
  34. X-chromosome inactivation analysis in a female carrier of FOXP3 mutation. Tommasini, A., Ferrari, S., Moratto, D., Badolato, R., Boniotto, M., Pirulli, D., Notarangelo, L.D., Andolina, M. Clin. Exp. Immunol. (2002) [Pubmed]
  35. An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Andaloussi, A.E., Lesniak, M.S. Neuro-oncology (2006) [Pubmed]
  36. Lactobacillus paracasei subsp. paracasei B21060 Suppresses Human T-Cell Proliferation. Peluso, I., Fina, D., Caruso, R., Stolfi, C., Caprioli, F., Fantini, M.C., Caspani, G., Grossi, E., Di Iorio, L., Paone, F.M., Pallone, F., Monteleone, G. Infect. Immun. (2007) [Pubmed]
WikiGenes - Universities