The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

sgg  -  shaggy

Drosophila melanogaster

Synonyms: CG2621, DMSGG3, DMZ3K25Z, Dm Zw3, Dmel\CG2621, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of sgg

  • These data show that tau abnormalities significantly disrupt neuronal function, in a phosphorylation-dependent manner, before the classical pathological hallmarks are evident and also suggest that the inhibition of GSK-3beta might have potential therapeutic benefits in tauopathies [1].
  • In both nkd and germ line clone-derived zw3 embryos the pattern elements derived from the anterior-most part of each segment, the denticle belts, are deleted [2].
  • We showed that human Tau protein was phosphorylated by endogenous protein kinases in flies, and overexpression of either GSK3beta or Cdk5 enhanced tau-induced toxicity [3].
  • The encoded proteins were 70% identical to GSK-3 and sgg over the protein kinase catalytic domain and, after production in Escherichia coli, autophosphorylated mainly on threonine and serine residues, but phosphotyrosine was also detected [4].
  • In view of the potential importance of GSK-3 beta in mammalian development and the lack of previous characterisation, we have expressed this protein in insect cells using recombinant baculovirus [5].
 

Psychiatry related information on sgg

 

High impact information on sgg

  • Ci-155 proteolysis is also inhibited if cells lack activity of the Drosophila GSK3, Shaggy, previously implicated in Wingless signaling [7].
  • Our results indicate a role for SGG/GSK-3 in TIMELESS phosphorylation and in the regulated nuclear translocation of the PERIOD/TIMELESS heterodimer [6].
  • Genetic epistasis experiments indicate that wg signaling operates by inactivating the zw3 repression of en autoactivation [8].
  • Here, we report that the segment polarity gene zeste-white 3 (zw3; also known as shaggy) acts as a repressor of en autoregulation [8].
  • Here we show that Sgg is also a negative regulator in the Hedgehog (Hh) pathway [9].
 

Chemical compound and disease context of sgg

 

Biological context of sgg

 

Anatomical context of sgg

  • Using Drosophila cell line assays, we found, in contrast to previous reports, that Wg induces accumulation of its transducer Armadillo (Arm)/beta-catenin without significant alteration of global Sgg-specific activity [15].
  • Li+ treatment of Drosophila S2 cells and rat PC12 cells induces accumulation of cytoplasmic Armadillo/beta-catenin, demonstrating that Li+ can mimic Wingless signalling in intact cells, consistent with its inhibition of GSK-3 [12].
  • Dual role for the zeste-white3/shaggy-encoded kinase in mesoderm and heart development of Drosophila [16].
  • Thus, inhibition of GSK-3beta is insufficient to activate Tcf-dependent transcription in T lymphocytes [14].
  • In contrast, in C57MG fibroblast cells, lithium inactivates GSK-3beta and induces Tcf-controlled transcription [14].
 

Associations of sgg with chemical compounds

 

Enzymatic interactions of sgg

  • In agreement with a previous study using human GSK-3beta, Wg did not cause phosphorylation changes of the Ser9 or Tyr214 regulatory phosphorylated sites of Sgg [15].
 

Regulatory relationships of sgg

 

Other interactions of sgg

 

Analytical, diagnostic and therapeutic context of sgg

References

  1. GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Mudher, A., Shepherd, D., Newman, T.A., Mildren, P., Jukes, J.P., Squire, A., Mears, A., Drummond, J.A., Berg, S., MacKay, D., Asuni, A.A., Bhat, R., Lovestone, S. Mol. Psychiatry (2004) [Pubmed]
  2. Multiple functions of a Drosophila homeotic gene, zeste-white 3, during segmentation and neurogenesis. Perrimon, N., Smouse, D. Dev. Biol. (1989) [Pubmed]
  3. Biochemical investigation of Tau protein phosphorylation status and its solubility properties in Drosophila. Chau, K.W., Chan, W.Y., Shaw, P.C., Chan, H.Y. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
  4. Arabidopsis homologs of the shaggy and GSK-3 protein kinases: molecular cloning and functional expression in Escherichia coli. Bianchi, M.W., Guivarc'h, D., Thomas, M., Woodgett, J.R., Kreis, M. Mol. Gen. Genet. (1994) [Pubmed]
  5. Baculovirus-mediated expression and characterisation of rat glycogen synthase kinase-3 beta, the mammalian homologue of the Drosophila melanogaster zeste-white 3sgg homeotic gene product. Hughes, K., Pulverer, B.J., Theocharous, P., Woodgett, J.R. Eur. J. Biochem. (1992) [Pubmed]
  6. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Martinek, S., Inonog, S., Manoukian, A.S., Young, M.W. Cell (2001) [Pubmed]
  7. Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Price, M.A., Kalderon, D. Cell (2002) [Pubmed]
  8. wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Siegfried, E., Chou, T.B., Perrimon, N. Cell (1992) [Pubmed]
  9. Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Jia, J., Amanai, K., Wang, G., Tang, J., Wang, B., Jiang, J. Nature (2002) [Pubmed]
  10. Effect of lithium on the circadian rhythms of locomotor activity and glycogen synthase kinase-3 protein expression in the mouse suprachiasmatic nuclei. Iwahana, E., Akiyama, M., Miyakawa, K., Uchida, A., Kasahara, J., Fukunaga, K., Hamada, T., Shibata, S. Eur. J. Neurosci. (2004) [Pubmed]
  11. Naked cuticle targets dishevelled to antagonize Wnt signal transduction. Rousset, R., Mack, J.A., Wharton, K.A., Axelrod, J.D., Cadigan, K.M., Fish, M.P., Nusse, R., Scott, M.P. Genes Dev. (2001) [Pubmed]
  12. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Stambolic, V., Ruel, L., Woodgett, J.R. Curr. Biol. (1996) [Pubmed]
  13. Overexpression of zeste white 3 blocks wingless signaling in the Drosophila embryonic midgut. Steitz, M.C., Wickenheisser, J.K., Siegfried, E. Dev. Biol. (1998) [Pubmed]
  14. Tcf-1-mediated transcription in T lymphocytes: differential role for glycogen synthase kinase-3 in fibroblasts and T cells. Staal, F.J., Burgering, B.M., van de Wetering, M., Clevers, H.C. Int. Immunol. (1999) [Pubmed]
  15. Functional studies of shaggy/glycogen synthase kinase 3 phosphorylation sites in Drosophila melanogaster. Papadopoulou, D., Bianchi, M.W., Bourouis, M. Mol. Cell. Biol. (2004) [Pubmed]
  16. Dual role for the zeste-white3/shaggy-encoded kinase in mesoderm and heart development of Drosophila. Park, M., Venkatesh, T.V., Bodmer, R. Dev. Genet. (1998) [Pubmed]
  17. Casein kinase I phosphorylates the Armadillo protein and induces its degradation in Drosophila. Yanagawa, S., Matsuda, Y., Lee, J.S., Matsubayashi, H., Sese, S., Kadowaki, T., Ishimoto, A. EMBO J. (2002) [Pubmed]
  18. A role for casein kinase 2alpha in the Drosophila circadian clock. Lin, J.M., Kilman, V.L., Keegan, K., Paddock, B., Emery-Le, M., Rosbash, M., Allada, R. Nature (2002) [Pubmed]
  19. Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. Hughes, K., Nikolakaki, E., Plyte, S.E., Totty, N.F., Woodgett, J.R. EMBO J. (1993) [Pubmed]
  20. wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo. Peifer, M., Sweeton, D., Casey, M., Wieschaus, E. Development (1994) [Pubmed]
  21. Shaggy (zeste-white 3) and the formation of supernumerary bristle precursors in the developing wing blade of Drosophila. Blair, S.S. Dev. Biol. (1992) [Pubmed]
  22. Biochemical characterization of the Drosophila wingless signaling pathway based on RNA interference. Matsubayashi, H., Sese, S., Lee, J.S., Shirakawa, T., Iwatsubo, T., Tomita, T., Yanagawa, S. Mol. Cell. Biol. (2004) [Pubmed]
  23. Drosophila Twins regulates Armadillo levels in response to Wg/Wnt signal. Bajpai, R., Makhijani, K., Rao, P.R., Shashidhara, L.S. Development (2004) [Pubmed]
  24. Drosophila caspase transduces Shaggy/GSK-3beta kinase activity in neural precursor development. Kanuka, H., Kuranaga, E., Takemoto, K., Hiratou, T., Okano, H., Miura, M. EMBO J. (2005) [Pubmed]
  25. The porcupine gene is required for wingless autoregulation in Drosophila. Manoukian, A.S., Yoffe, K.B., Wilder, E.L., Perrimon, N. Development (1995) [Pubmed]
  26. Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. Dominguez, I., Itoh, K., Sokol, S.Y. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  27. A Drosophila Axin homolog, Daxin, inhibits Wnt signaling. Willert, K., Logan, C.Y., Arora, A., Fish, M., Nusse, R. Development (1999) [Pubmed]
  28. Analysis of RIM11, a yeast protein kinase that phosphorylates the meiotic activator IME1. Bowdish, K.S., Yuan, H.E., Mitchell, A.P. Mol. Cell. Biol. (1994) [Pubmed]
 
WikiGenes - Universities