The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

SLC17A1  -  solute carrier family 17 (organic anion...

Homo sapiens

Synonyms: NAPI-1, NPT-1, NPT1, Na(+)/PI cotransporter 1, Na/Pi-4, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of SLC17A1


Psychiatry related information on SLC17A1

  • This field study examined how butterflies of the polyandric gift-giving species Pieris napi (Lepidoptera: Pieridae) use body resources in their reproduction and how the male donations affect the females use of stored reserves [5].
  • 2 large independent cohorts of preterm infants ranging between 32 weeks and term were given a neurobehavioral assessment (the NAPI) that measures, among other things, individual differences in excitation management [6].

High impact information on SLC17A1

  • Administration of sFRP-4 to intact rats over 8 hours increased FEPi, decreased serum phosphate (1.95 +/- 0.1 to 1.53 +/- 0.09 mmol/l, P < 0.05) but did not alter serum 1alpha, 25-dihydroxyvitamin D, renal 25-hydroxyvitamin D 1alpha-hydroxylase cytochrome P450, and sodium-phosphate cotransporter mRNA concentrations [7].
  • We first identified a PAM locus by homozygosity mapping to 4p15, then identified, by a candidate-gene approach, the gene responsible for the disease as SLC34A2 (the type IIb sodium-phosphate cotransporter gene), which is involved in phosphate homeostasis in several organs [8].
  • The predicted amino acid sequence of OATV1 exhibited 60-65% identity to those of human, rat, rabbit, and mouse sodium-dependent phosphate cotransporter type 1 (NPT1), although OATV1 did not transport phosphate [9].
  • This result was confirmed by co-transfecting HEK293 cells with the sodium-phosphate cotransporter and wild type AKAP, a mutant AKAP79, or the empty vector [10].
  • Mutations in the gene encoding the human sodium-phosphate cotransporter (NPT2), causing reduced phosphate affinity and dominant-negative behavior, were described [11].

Biological context of SLC17A1

  • The DNA sequence was identical with that of NPT-1 cDNA published by Chong, Kristjansson, Zoghbi and Hughe (1993) (Genomics, 18, 355-359) [12].
  • Npt1 is approximately 29 kb with 12 exons, whereas NPT1 is approximately 49 kb with one additional exon [13].
  • This cDNA maps the location of the gene encoding NPT1 to human chromosome 6q21.3-p23 [14].
  • Amino acid sequence comparisons indicate a 69.7% identity between human NPT1 and rabbit NaPi-1 polypeptides; the inclusion of conservative substitutions increases the homology between the two proteins to 81.5% [14].
  • Characterization of the 5' flanking region of the human NPT-1 Na+/phosphate cotransporter gene [15].

Anatomical context of SLC17A1

  • Hybrid depletion with antisense oligonucleotides to NaP(i)-3 and NPT-1 completely inhibited poly(A)+ RNA-induced Na(+)-dependent P(i) uptake in oocytes [12].
  • These findings indicate that two high-affinity Na/P(i) cotransporters (NaP(i)-3 and NPT-1) are present in human kidney cortex [12].
  • However, despite the identification of multiple isoforms in three gene families (Timmer, R.T., and R.B. Gunn. 1998. Am. J. Physiol. Cell Physiol. 274:C757-C769), the molecular basis for the sodium-phosphate cotransporter in erythrocytes is unknown [16].
  • We also show that FGF23 induces tyrosine phosphorylation and inhibits sodium-phosphate cotransporter Npt2a mRNA expression using opossum kidney cells, a model kidney proximal tubule cell line [17].
  • A high phosphate diet caused a significant increase in protein expression of NPT1, both in cerebrum and cerebellum [3].

Associations of SLC17A1 with chemical compounds

  • Considering its chloride ion sensitivity, Npt1 is expected to function for secretion of PAH from renal proximal tubular cells [18].
  • p-aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1 [18].
  • Human NPT1 also accepted uric acid, benzylpenicillin, faropenem, and estradiol-17beta-glucuronide as substrates [18].
  • Candesartan decreased type 2 sodium-phosphate cotransporter abundance in both WKH (52 +/- 7% of control; P<0.05) and BBM (32 +/- 7% of control; P<0.05) [19].
  • Males of the green-veined butterfly Pieris napi synthesize and transfer the volatile methyl salicylate (MeS) to females at mating, a substance that is emitted by non-virgin females when courted by males, curtailing courtship and decreasing the likelihood of female re-mating [20].

Other interactions of SLC17A1


Analytical, diagnostic and therapeutic context of SLC17A1


  1. Hereditary Hypophosphatemic Rickets with Hypercalciuria Is Caused by Mutations in the Sodium-Phosphate Cotransporter Gene SLC34A3. Lorenz-Depiereux, B., Benet-Pages, A., Eckstein, G., Tenenbaum-Rakover, Y., Wagenstaller, J., Tiosano, D., Gershoni-Baruch, R., Albers, N., Lichtner, P., Schnabel, D., Hochberg, Z., Strom, T.M. Am. J. Hum. Genet. (2006) [Pubmed]
  2. Identification of an extracellular domain within the human PiT2 receptor that is required for amphotropic murine leukemia virus binding. Feldman, S.A., Farrell, K.B., Murthy, R.K., Russ, J.L., Eiden, M.V. J. Virol. (2004) [Pubmed]
  3. A high inorganic phosphate diet perturbs brain growth, alters Akt-ERK signaling, and results in changes in cap-dependent translation. Jin, H., Hwang, S.K., Yu, K., Anderson, H.K., Lee, Y.S., Lee, K.H., Prats, A.C., Morello, D., Beck, G.R., Cho, M.H. Toxicol. Sci. (2006) [Pubmed]
  4. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. Prié, D., Huart, V., Bakouh, N., Planelles, G., Dellis, O., Gérard, B., Hulin, P., Benqué-Blanchet, F., Silve, C., Grandchamp, B., Friedlander, G. N. Engl. J. Med. (2002) [Pubmed]
  5. Nuptial gifts and the use of body resources for reproduction in the green-veined white butterfly Pieris napi. Stjernholm, F., Karlsson, B. Proc. Biol. Sci. (2000) [Pubmed]
  6. Reliable individual differences in preterm infants' excitation management. Korner, A.F. Child development. (1996) [Pubmed]
  7. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. Berndt, T., Craig, T.A., Bowe, A.E., Vassiliadis, J., Reczek, D., Finnegan, R., Jan De Beur, S.M., Schiavi, S.C., Kumar, R. J. Clin. Invest. (2003) [Pubmed]
  8. Mutations in SLC34A2 Cause Pulmonary Alveolar Microlithiasis and Are Possibly Associated with Testicular Microlithiasis. Corut, A., Senyigit, A., Ugur, S.A., Altin, S., Ozcelik, U., Calisir, H., Yildirim, Z., Gocmen, A., Tolun, A. Am. J. Hum. Genet. (2006) [Pubmed]
  9. Identification of a novel voltage-driven organic anion transporter present at apical membrane of renal proximal tubule. Jutabha, P., Kanai, Y., Hosoyamada, M., Chairoungdua, A., Kim, d.o. .K., Iribe, Y., Babu, E., Kim, J.Y., Anzai, N., Chatsudthipong, V., Endou, H. J. Biol. Chem. (2003) [Pubmed]
  10. Parathyroid hormone regulation of type II sodium-phosphate cotransporters is dependent on an A kinase anchoring protein. Khundmiri, S.J., Rane, M.J., Lederer, E.D. J. Biol. Chem. (2003) [Pubmed]
  11. Functional characterization of two naturally occurring mutations in the human sodium-phosphate cotransporter type IIa. Virkki, L.V., Forster, I.C., Hernando, N., Biber, J., Murer, H. J. Bone Miner. Res. (2003) [Pubmed]
  12. Cloning and functional expression of a Na(+)-dependent phosphate co-transporter from human kidney: cDNA cloning and functional expression. Miyamoto, K., Tatsumi, S., Sonoda, T., Yamamoto, H., Minami, H., Taketani, Y., Takeda, E. Biochem. J. (1995) [Pubmed]
  13. Murine and human type I Na-phosphate cotransporter genes: structure and promoter activity. Soumounou, Y., Gauthier, C., Tenenhouse, H.S. Am. J. Physiol. Renal Physiol. (2001) [Pubmed]
  14. Molecular cloning of the cDNA encoding a human renal sodium phosphate transport protein and its assignment to chromosome 6p21.3-p23. Chong, S.S., Kristjansson, K., Zoghbi, H.Y., Hughes, M.R. Genomics (1993) [Pubmed]
  15. Characterization of the 5' flanking region of the human NPT-1 Na+/phosphate cotransporter gene. Taketani, Y., Miyamoto, K., Chikamori, M., Tanaka, K., Yamamoto, H., Tatsumi, S., Morita, K., Takeda, E. Biochim. Biophys. Acta (1998) [Pubmed]
  16. The molecular basis for Na-dependent phosphate transport in human erythrocytes and K562 cells. Timmer, R.T., Gunn, R.B. J. Gen. Physiol. (2000) [Pubmed]
  17. Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor-23. Yu, X., Ibrahimi, O.A., Goetz, R., Zhang, F., Davis, S.I., Garringer, H.J., Linhardt, R.J., Ornitz, D.M., Mohammadi, M., White, K.E. Endocrinology (2005) [Pubmed]
  18. p-aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1. Uchino, H., Tamai, I., Yamashita, K., Minemoto, Y., Sai, Y., Yabuuchi, H., Miyamoto, K., Takeda, E., Tsuji, A. Biochem. Biophys. Res. Commun. (2000) [Pubmed]
  19. Long-term regulation of proximal tubule acid-base transporter abundance by angiotensin II. Turban, S., Beutler, K.T., Morris, R.G., Masilamani, S., Fenton, R.A., Knepper, M.A., Packer, R.K. Kidney Int. (2006) [Pubmed]
  20. Sexual conflict and anti-aphrodisiac titre in a polyandrous butterfly: male ejaculate tailoring and absence of female control. Andersson, J., Borg-Karlson, A.K., Wiklund, C. Proc. Biol. Sci. (2004) [Pubmed]
  21. Na+/H+ exchanger-regulatory factor 1 mediates inhibition of phosphate transport by parathyroid hormone and second messengers by acting at multiple sites in opossum kidney cells. Mahon, M.J., Cole, J.A., Lederer, E.D., Segre, G.V. Mol. Endocrinol. (2003) [Pubmed]
  22. Growth, immortalization, and differentiation potential of normal adult human proximal tubule cells. Orosz, D.E., Woost, P.G., Kolb, R.J., Finesilver, M.B., Jin, W., Frisa, P.S., Choo, C.K., Yau, C.F., Chan, K.W., Resnick, M.I., Douglas, J.G., Edwards, J.C., Jacobberger, J.W., Hopfer, U. In Vitro Cell. Dev. Biol. Anim. (2004) [Pubmed]
  23. Comparative mapping of Na+-phosphate cotransporter genes, NPT1 and NPT2, in human and rabbit. Kos, C.H., Tihy, F., Murer, H., Lemieux, N., Tenenhouse, H.S. Cytogenet. Cell Genet. (1996) [Pubmed]
  24. Chromosome assignments of genes for human Na(+)-dependent phosphate co-transporters NaPi-3 and NPT-1. Miyamoto, K., Tatsumi, S., Yamamoto, H., Katai, K., Taketani, Y., Morita, K., Takeda, E. Tokushima J. Exp. Med. (1995) [Pubmed]
WikiGenes - Universities